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Abstract—Neural-Network (NN) based compensation is a thor-
oughly investigated topic in automatic control. However, these
approaches include the neural network inside the control loop.
This paper proposes an alternative approach where the NN is
external to the loop, making decisions on the parameters of a
linear compensator in cascade with a plant to be controlled with a
feedback system. The proposed model utilizes the adept sequence
transduction capabilities of the Transformer architecture. This
approach is used to design a discrete controller of any order to
maximize available performance. This paper applies this method
to simple plants without extreme dynamics and a plant with
non-minimum phase and very high quality factor modes.

Index Terms—Transformer architecture, disturbance rejection,
high-order compensation

I. INTRODUCTION

The design of a compensator, C, for the feedback system
in Fig. 1 comes with a panoply of design choices subject
to fundamental constraints. Performance requirements are
weighed against limitations imposed by the system being
controlled. This provides the control designer with an
extensive list of targets to meet, dilemmas to solve and scales
to balance. This duty is often reduced to the application of
proportional-integral (PI) or proportional-integral-derivative
(PID) controllers due to these complexities. PID controllers
give the designer choices over a gain and two real zeros
in the compensator [1]. PID also comes with the inherent
benefit of guaranteeing zero steady state error when tracking
the step reference. PID controllers have ubiquitous automated
tuners and algorithms, making them easy options [1].
This simplicity comes at the cost of performance. High
order compensation, as compared to PID, presents the
possibility of extracting more performance out of a system.
Performance may be quantified as the amount of feedback

Fig. 1. Block diagram of a control system

over the frequencies of interest. Maximizing feedback
improves performance, rejects disturbances and reduces
sensitivity to plant parameter variation [2]. These desirable
features can be difficult to achieve without the proper training.

In this paper we propose a deep learning approach to
compensator design to ease the difficulty of extracting
performance out of a system. Digital control systems contain
time data, thus, a deep learning model capable of handling
sequential information must be chosen. The Transformer
architecture is a primary tool for understanding sequential data
[3]. Transformers excel at learning long term dependencies
by using several Multi-Head Attention stages. Used most
prominently in natural language processing, the Transformer
can be adapted to the purposes of compensator design by
attending to both reference and output signals to produce
discrete compensator parameters (pole, zero locations and
gain). With the Transformer model arranged in this way,
the designer may relegate high order compensator design
to the Transformer. The job of the designer is reduced to
hyper-parameter choice for the Transformer, compensator
order and target performance from the system.

Deep learning has been used frequently in feedback
control for the modeling and control of nonlinearities [4].
These approaches share the common approach of putting
the NN inside the control loop, in cascade with a standard
compensator [5]. The approach proposed in this paper sets
the NN outside the loop as in Fig. 2, which makes decisions
on the compensator parameters. Advantages of this approach,
compared to previous work, are:

1) Ease of determining stability of the closed loop control
system.

2) Ease of understanding the current compensation scheme.
3) The closed loop transfer function may be explicitly

stated.

A. Terminology and Background Theory

For the feedback loop in Fig. 1, rational function T (s) =

C(s)P (s) = u2(s)
u1(s)

of the Laplace variable s is the loop
transmission (alternatively return ratio) of a feedback loop.
For a low pass loop transmission, ωb, where |T (jωb)| = 1 is
the control bandwidth (alternatively 0 dB crossover frequency),
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Fig. 2. Block diagram of control system with Transformer

and ωf where |T (jω)| ≃ A0, ∀ω ≤ ωf , A0 a constant is the
functional bandwidth. |F (s)| = |1 + T (s)| is the feedback.
|F (s)| > 1, |F (s)| < 1 and |T (s)| ≪ 1 define negative,
positive and negligible feedback, respectively. |F (s)| ≫ 1
defines large feedback. These definitions indicate the effect
of feedback on the logarithmic response of the closed loop
system to disturbances. Nonminimum phase is the phase lag
not found using the Bode phase/gain relationship [2].

B. The Goals of Feedback

The following enumerated phrases are not intended to be
comprehensive. They apply to the challenges of controlling
difficult SISO systems aggressively.

1) To stabilize an unstable system.
2) To maximize available negative feedback.
3) To provide sufficient robustness in the presence of

sector-type nonlinearities.
Item 1 is obvious. If the plant is unstable, then only

the introduction of feedback will provide stability. Available
negative feedback is reduced in this case as Bode proved
[2]. The complexity of the design to stabilize is directly
proportional to the number of unstable open-loop poles and
their distance from the imaginary axis.
Item 2 is nuanced. For low-order plants with long time con-
stants, PID usually suffices. For complicated plants with many
lightly damped modes within the bandwidth, the compensator
design is a delicate process. For low-pass systems, the designer
must endeavor to maximize the feedback over the functional
bandwidth with the crossover frequency as a constraint [6]. For
vibration suppression, an individual mode must be attacked
with the maximum available feedback [7].
Item 3 requires a judicious application of feedback. Nyquist-
stable compensation applied to systems with limited or im-
perfect actuation (i.e. saturation, stiction) invariably results
in oscillation. Nonlinear dynamic compensation can be ap-
plied for aggressive feedback application for these plants
[8], however only linear compensation is considered in this
work. Large feedback application (linear) for these types of
plants requires fractional-order roll-off with carefully designed
lead compensation for sufficient relative stability and sharp
attenuation of loop gain when feedback becomes negligible.
After maximizing feedback, a prefilter is designed to minimize
overshoot and mitigate steady state error. [2].

To address adequately these three items requires an engineer
highly skilled in feedback theory and practice. The authors
present a method that automates this process.

II. MODEL ELEMENTS

A. The Difference Equation

Given a discrete time transfer function,

H(z−1) =
b0 + b1z

−1 + ...+ bnz
−n

1 + a1z−1 + ...+ amz−m
(1)

the output at sample k is given as:

y[k] = b0u[k] + b1u[k − 1] + ...+ bnu[k − n]

−a1y[k − 1]− a2y[k − 2]− ...− amy[k −m]
(2)

The input to the system at time k is u[k].
For a closed loop system of relative degree r, the closed loop
transfer function is:

H(z−1) =
C(z)P (z)

1 + C(z)P (z)
(3)

Split into numerator and denominator polynomials,

C =
CB

CA
,

P =
PB

PA

to express

H(z−1) =
CBPB

CBPB + CAPA
(4)

=
b0z−r + b1z−r−1 + ...+ bnz−m

b0z−r + b1z−r−1 + ...+ bnz−m + 1 + a1z−1 + ...+ amz−m
.

(5)
Let the tracking error be e[k] = u[k] − y[k], and the output
may be expressed as:

y[k] = b0e[k − r] + b1e[k − r − 1] + ...+ bne[k −m]

−a1y[k − 1]− a2y[k − 2]− ...− amy[k −m]
(6)

B. Model Architecture

The Transformer architecture is an encoder-decoder struc-
ture similar to most sequence transduction models. The en-
coder is composed of many multi-head self-attention mecha-
nisms that build parallel representational subspaces that attend
to patterns in the data. Self-attention refers to the process of
weighting the importance of all elements in a sequence to
a particular element of the same sequence. This process is
carried out by the formula:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (7)

Details of the Transformer’s architecture are described by
Vaswani et al. [3].

The input sequence given to the Transformer encoder
are the input samples, u[k], u[k − 1], ..., u[k − m + 1]. The
output sequence provided to the decoder are the output
samples y[k− 1], y[k− 2], ..., y[k−m]. Thus the approach in
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this paper is auto-regressive as the output of the closed loop
model becomes the new leading output fed to the decoder.
The encoder self-attention mechanism has a full query matrix
Q for input elements where the decoder has a query vector
q to provide an output for a given time step. Raw inputs and
outputs are projected to the embedding dimension by a linear
layer that is trained along with the model.
The output of the Transformer are the parameters of the
compensator. These parameters come in seven types:

1) Compensator gain CK

2) Compensator real zero locations Cz

3) The real portion of a complex conjugate pair of zeros
Czr

4) The imaginary portion of a complex conjugate pair of
zeros Czi

5) Compensator real pole locations Cp

6) The real portion of a complex conjugate pair of poles
Cpr

7) The imaginary portion of a complex conjugate pair of
poles Cpi

The number of zeros and poles, both real and imaginary, is
chosen by the user. The produced compensator is then used
to generate y[k] through the closed loop system.

The embedding dimension for the Transformer is 32,
subspace dimension is 64 and four heads were used. Both
encoder and decoder fully connected networks use two linear
layers with 64 neurons each.

C. Training

Training consists of providing a reference sequence to the
encoder, which is masked to maintain causality. Each reference
time step generates a vector of compensator parameters which
is used to generate the output at that time step. The loss
function for the model is the mean-squared tracking error:

1

2
(y[k]− u[k])2.

This loss function was chosen as the overall problem is similar
to a regression problem. The network is trained at every time
step. Once a reference sequence is finished, a new reference
is generated and trained on. The learning rate is varied by the
schedule:

• Linear increase from 10% to 10,000% learning rate at
one quarter of the training epochs.

• Linear decrease from 10,000% learning rate to 10%
learning rate to end of training.

Base learning rate is 10−5.

D. Closed Loop System Backpropagation

The output of the Transformer is separated from the loss
function by the closed loop system, thus the gradient of the
loss function with respect to the compensator parameters
must be calculated.

With PK representing the plant gain, the output terms
associated with the compensator zeros are

CKPKCB(z
−1)PB(z

−1), (8)

which in factored form for n zeros is
CKPK(z−1 + CB1

)(z−1 + CB2
)(z−1 + CB3

)...

(z−1 + CBn
)PB(z

−1)
(9)

Equation (8) is expanded and the inverse Z-transform applied
to get

CKPK(e[k − r] + b1e[k − r − 1] + ...+ bne[k −m]). (10)

The derivative of the output y[k] with respect to the gain CK

is
∂y[k]

∂CK
= PK(e[k−r]+b1e[k−r−1]+...+bne[k−m]). (11)

The derivative of the output y[k] with respect to the jth real
zero is

∂y[k]

∂CBj

= CKPK(e[k − r − 1]+

b′1e[k − r − 2] + ...+ b′ne[k −m]),

(12)

where b′1, b
′
2, ..., b

′
n are the polynomial coefficients generated

from expanding

CKPKCB(z
−1)PB(z

−1)

(z−1 + CBj
)

. (13)

Finally Cj may be part of a complex conjugate pair of zeros.
(z+CBj )(z+C∗

Bj
). As CBj and C∗

Bj
share two parameters,

two derivatives must be calculated for the entire pair. The
derivative with respect to the real portion of CBj

is

∂y[k]

∂Re{CBj
}
= 2CKPK(e[k − r − 1]+

b′′1e[k − r − 2] + ...+ b′′ne[k −m]),

(14)

where b′′1 , b
′′
2 , ..., b

′′
n are the polynomial coefficients generated

from expanding

CB(z
−1)PB(z

−1)
(z−1 + Re{CBj

})
(z−1 + CBj

)(z−1 + C∗
Bj

)
. (15)

The derivative with respect to the imaginary portion of Cj is

∂y[k]

∂Im{CBj}
= 2CKPKIm{CBj}(e[k − r − 2]+

b′′′1 e[k − r − 3] + ...+ b′′′n e[k −m]),

(16)

where b′′′1 , b′′′2 , ..., b′′′n are the polynomial coefficients generated
from expanding

CB(z
−1)PB(z

−1)

(z−1 + CBj )(z
−1 + C∗

Bj
)
. (17)

A similar process is carried out for the m compensator poles.
The derivative of the output with respect to the jth real pole
is
∂y[k]

∂CAj

= −y[k − 2]− a′1y[k − 3]− ...− a′my[k −m]. (18)
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If CAj
is part of a complex conjugate pair of zeros, the

derivative with respect to the real part of the pair is

∂y[k]

∂Re{CAj}
= −2(y[k− 2]− a′′1y[k− 3]− ...− a′′my[k−m]).

(19)
The derivative with respect to the imaginary part is

∂y[k]

∂Im{CAj
}
= 2Im{CAj}(−y[k − 3]− a′′′1 y[k − 4]− ...

− a′′′my[k −m]).
(20)

The coefficients a′1, a
′
2, ..., a

′
m are generated from expanding

the polynomial
CA(z

−1)PA(z
−1)

(z−1 + CAj
)

, (21)

a′′1 , a
′′
2 , ..., a

′′
m from expanding

CA(z
−1)PA(z

−1)
(z−1 + Re{CAj

})
(z−1 + CAj

)(z−1 + C∗
Aj

)
, (22)

and a′′′1 , a′′′2 , ..., a′′′m from expanding

CA(z
−1)PA(z

−1))

(z−1 + CAj
)(z−1 + C∗

Aj
)
. (23)

III. PERFORMANCE ON KNOWN PLANTS

A. PID Comparison and Tuning

To compare the performance of the Transformer-designed
compensator against a PID controller, the step reference will
be used. Time domain performance characteristics to be ex-
amined are the rise time, settling time, overshoot, steady state
error and absolute tracking error.

• Rise time: the time to reach 90% of the systems final
value.

• Settling time: the time after which the system is bounded
within ±5% of its final value.

• Overshoot: The ratio of the peak response value to the
final value (reported as a percent).

• Steady state error: The difference between the step ampli-
tude and the system’s final value (reported as a percent).

• Absolute tracking error: The sum of the absolute value
of all tracking error samples.

PID tuning was done in MATLAB’s PID Tuner application
[9]. MATLAB allows the user to select for bandwidth and
phase margin. The following plants were tuned for maximum
allowable bandwidth and minimum phase margin.

B. Prefilter

Transformer-designed compensators begins with random
parameters. These initial parameters results in high error
and no tracking. In training the Transformer to minimize
tracking error, major sources of error must be solved first. The
Transformer will first achieve tracking at the expense of high
overshoot and long settling times. Continued training past this
point will remove overshoot at the cost of feedback over the
functional bandwidth. From the control designer’s perspective,

this is not a good trade as maximization of feedback over the
functional bandwidth is the goal of the feedback compensator
[6]. To remove overshoot while retaining performance, a
prefilter has been applied to Transformer outputs. The prefilter
is the double notch described by the transfer function,

R(s) = (
s2 + ωbs+ (0.9ωb)

2

s2 + 2ωbs+ (0.9ωb)2
)2, (24)

which is converted to a discrete-time filter using MATLAB’s
zero-order hold function. This prefilter was chosen to remove
input power from the limited band of frequencies which
are causing overshoot while retaining performance over the
functional bandwidth.

C. Simple Plants

1) P1: Consider the plant

P1 =
−0.78z2 − 0.15z − 0.01

z3 − 0.43z2 − 0.20z − 0.01
, (25)

sampled at 1kHz. The Transformer outputs new compensator
parameters for a closed loop system at every time step, thus
the median compensator from a given epoch is considered.
The median compensator of the final epoch is

C1 =
−1.02z3 + 0.95z2 + 0.14z − 0.34

z5 − 0.59z4 − 0.44z3 + 0.004z2 + 0.02z + 10−3
. (26)

The resulting loop transmission function in Fig. 3 displays
63dB of feedback over the functional bandwidth and a phase
margin of 41◦. These characteristics result in a significantly
more aggressive step response as compared to a PID con-
troller as shown in Fig. 4. C1 is 5th order compared to
the order-one PID compensator. The extra parameters are
spent primarily on shaping the response around crossover. The
time domain performance characteristics of the Transformer-
generated compensator and a PID controller are compared in
table I. The aggressive approach taken by the Transformer
results in significant overshoot. Application of a prefilter is
required to remove this quality while retaining performance. It
is noted that the Transformer being external to the loop allows
the usage of linear control theory to determine performance
and stability. This is a critical capability.

Performance Measure Transformer PID
Rise Time (ms) 15 226

Settling Time (ms) 15 294
Overshoot (%) 2 0

Steady State Error (%) 0 0
Absolute Tracking Error 7.3 99.87

TABLE I
CLOSED LOOP PERFORMANCE WITH P1
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Fig. 3. Discrete loop transmission Bode plot C1P1.

Fig. 4. Closed loop step response using C1.

2) P2: For the plant

P2 =
0.5z5 − 0.22z4 − 0.47z3 + 0.1z2 + 0.17z + 0.03

z6 − 2.17z5 + 1.64z4 − 0.64z3 + 0.26z2 − 0.11z + 0.02
, (27)

sampled at 100Hz. The median compensator at the end of
training is

C2 =
2.1z6 + 1.2z5 + 0.1z4 + 0.5z3 + 0.1z2 − 0.02z + 0.001

z7 + 2.1z6 + 0.8z5 − 1.1z4 − z3 − 0.3z2 − 0.02z − 0.002
, (28)

producing a the loop transmission function in Fig. 5. The step
response performance is shown in Fig. 6 and compared in table
II. The PID outperforms the Transformer output in feedback
at low frequency because of PID integral action. However, the
transformer output achieves better rise time and settling time
through a more carefully shaped crossover region and a 40◦

phase margin.

D. Complex Plants

Consider a complicated plant with non-minimum phase
characteristics and very high quality factor modes:

P3 =
2.16(z + 1.19)(z + 0.02)(z2 − 1.76z + 1.006)

z(z2 − 1.2z + 0.995)(z2 − 0.91z + 0.67)
, (29)

sampled at 200Hz. The Transformer was given control over
an 11th order compensator, C3, with 8 real zeros, one

Fig. 5. Discrete loop transmission Bode plot C2P2.

Performance Measure Transformer PID
Rise Time (ms) 20 50

Settling Time (ms) 170 330
Overshoot (%) 15 23

Steady State Error (%) 0 0
Absolute Tracking Error 4.3 5.79

TABLE II
CLOSED LOOP PERFORMANCE WITH P2

complex conjugate pair of zeros, 5 real poles and 3 pairs of
complex conjugate poles. A potentially problematic element
of the Transformer output is the gain-stabilized mode at
200 rad/s seen in Fig. 7. During training, the Transformer
attempts to use this element to speed up response to
high frequency references, but fails to phase stabilize the
section. The time domain performance characteristics and
step response are compared in table III and Fig. 8 respectively.

Performance Measure Transformer PID
Rise Time (ms) 150 1380

Settling Time (ms) 165 1830
Overshoot (%) 1 0

Steady State Error (%) 0 0
Absolute Tracking Error 18.2 85.6

TABLE III
CLOSED LOOP PERFORMANCE WITH P3

IV. CONCLUSION

Automatic control and frequency domain designs still under-
pin much of our mechanical world. Low order techniques like
PID function and are easy to implement, but do not extract
maximum available performance. A deep learning method
has been presented which successfully develops high order
compensators which outperform conventional tools and which
requires limited knowledge of control theory. This method
provides superior performance compared to standard control
designs for both simple and complex plants as evidenced by
the presented examples.
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Fig. 6. Closed loop step response using C2.

Fig. 7. Discrete loop transmission function C3P3.

V. FUTURE WORK

A. Prefilter

The process of error minimization taken by the Transformer
can begin to conflict with feedback compensator design goals.
The Transformer achieves tracking of the training references
and then continues to minimize error beyond this point.
Minimization of tracking error can come at the expense of
feedback. In this case, a prefilter is used to correct transient
response while retaining performance. Extension of the current
method to include a learn-able prefilter would complete the
automatic design process.

B. Non-linearity

All control problems come with some degree of non-
linearity. Previous work in this field has used deep learning
to effectively model and compensate for this issue. Either
merging prior work with the proposed approach or expanding
the Transformer’s capability to also model these non-linearities
would greatly improve the potential for deep learning models
to be used in control system design (section I, subsection B,
item 3).

Fig. 8. Closed loop performance using C3.
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