
STAD-FEBTE, a shallow and supervised framework for time series
anomaly detection by automatic feature engineering, balancing, and

tree-based ensembles: An industrial case study

M.A. Zakeri Harandi1, Chen Li1, Casper Schou1, Sigurd L. Villumsen2, Simon Bøgh1, Ole Madsen1

Abstract— Modern industrial systems are equipped with
multi-sensor units, and building anomaly detection modules to
monitor their collected data has become a vital task. Missing
such abnormal patterns may cause producing faulty products,
unwanted shutdowns in the production line, or even catastrophic
damages. Sensor measurements of different natures with dif-
ferent sampling frequencies build a multivariate heterogeneous
time series data. Conventional machine learning models fail
to capture the temporal characteristics of such data. Deep
learning models can address this thanks to their internal network
architecture, yet training such models requires large datasets
with adequate samples from all anomaly classes. This is not
the case in real-world problems where class imbalance is a
major issue. Tree-based ensembles are reported to have the
dominant performance when dealing with structured tabular
data. Inspired by this, we propose a supervised framework that
combines an automatic feature engineering pipeline converting
the time series dataset into its tabular counterpart with tree-
based ensembles. The suggested method tackles class imbalance
by generating synthetic anomalies using balancing techniques.
Moreover, it allows handling heterogeneous multivariate data
and augmenting categorical features with sensor measurements.
Two real-world industrial datasets of relatively small size from
robotized screwing processes are benchmarked, showing better
results for the suggested framework compared to commonly used
deep learning architectures.

Index Terms— time series anomaly detection; automatic fea-
ture engineering; tree-based ensembles; robotic screwing

I. INTRODUCTION AND BACKGROUND

Anomalies refer to observations that differ from the major-
ity of the data to the extent that they raise suspicions. Whether
it is the detection of fraudulent transactions in financial
systems, intrusions in network systems, or sudden changes
in environmental monitoring systems, time series anomaly
detection (AD) has been studied extensively [1]. Due to the
evolution of Industry 4.0 and thanks to advancements in the
Internet of Things, modern industrial manufacturing systems
are starting to be equipped with multi-sensor units capturing
data from various features. This has enabled the development
of monitoring systems built on top of the collected data to find
abnormal patterns. Failure to detect such anomalies results in
the production of faulty products, unwanted shutdowns in the
production line, or even life-threatening accidents.

1M.A. Zakeri Harandi, Chen Li, Casper Schou, Simon Bøgh, and Ole Mad-
sen are with the Robotics and Automation Group, Department of Materials
and Production Eng., Aalborg University, Aalborg, Denmark. {mzakeri,
cl, cs, sb, om}@mp.aau.dk

2Sigurd L. Villumsen is with the Global Production Technologies group,
VELUX A/S, Østbirk, Denmark. sigurd.villumsen@velux.com

Time series AD is an important task with significant appli-
cations, thus a wide range of machine learning (ML) and deep
learning (DL) methods are proposed to tackle that [2]. The
task becomes more challenging in industrial processes. First,
the developed monitoring system should be generalizible, i.e.,
both process and sensor independent. Second, multi-sensor
systems collecting data of different natures with different
sampling frequencies build a multivariate heterogeneous time
series dataset. Passing this data to the ML model while pre-
serving internal sensor information and keeping samples from
different classes distinguishable is not straightforward [3],
[4]. Third, anomalies occur rarely in production, and in-
advance replication of them in experimental setups is costly
and sometimes ineffective. Therefore, most of the real-world
AD datasets suffer from class imbalance, i.e., their number of
normal samples outweighs their anomalies by a large margin.
Fourth, industrial systems are often subject to changes in their
sensor configuration, i.e., introduction of new sensors and the
removal of old ones. Creating new datasets and retraining all
models after any change in sensor configuration is impractical.
Assessing the validity of the model trained on a previous
sensor configuration is translated into the identification of
concept drift [5] which should be addressed by the AD model
as well. Last, all industrial processes are characterized by a
set of categorical features that are needed to be involved
in the anomaly detection process. Combining these features
with time series data coming from sensor measurements
prior to training is not simple from the viewpoint of data
augmentation.

Two major classes of methods have been employed to tackle
this problem. The first class involves passing the time series
dataset through a data processing pipeline which finds useful
features from the dataset. An ML model is then trained on top
of the new data representation created by the obtained feature
mapping [6]–[8]. We call this feature-based time series AD.
The second approach is to borrow DL architectures and apply
them directly on the raw time series data [9]–[11]. Here, the
feature extraction task is handled by the internal complex
architecture of the involved artificial neural network. We call
this deep time series AD. Both methods come with challenges.
Conventional ML models are tailored for tabular data, i.e.,
a collection of samples carrying identical features, and they
fail to capture temporal and sequential characteristics of the
time series data. The data processing step aims to fill this gap
by extracting relevant features from the time series data and

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 840

converting the dataset into a tabular one. However, traditional
techniques are domain specific and expert knowledge demand-
ing. Deep learning architectures are developed to remove this
dependency and leave the feature engineering task to the
internal architecture of the network. Besides, they can address
changes in sensor configurations by transfer learning [9].
Training such models, nevertheless, demands large datasets
with adequate number of samples representing each class
of anomaly, making them prone to class imbalance which
is a major issue in almost all real-world anomaly detection
datasets. Also, several benchmark studies have revealed that
depending on the AD task at hand, deep neural networks
(DNNs) might outperform conventional ML models only by
a narrow margin or even have a worse performance [12],
[13]. Finally, identification of concept drift and augmenting
categorical features into the model are difficult to achieve
while dealing with DL architectures [2].

Machine learning ensembles have been extensively applied
in numerous fields. In an ensemble architecture, instead of
training a single model, a collection of models, aka base-
learners, are trained on slight alternations of the training data
and their estimations are combined to build a meta model
known as the ensemble. While each base learner is normally
a weak estimator with either high bias or variance, their ag-
gregation builds a model with a drastically better performance
that prevents overfitting, is less computationally expensive,
and provides a better representation for the hypothesis, in
addition to mitigating challenges such as class imbalance,
curse of dimensionality, and concept drift [14]. Tree-based
ensembles are the class of algorithms using decision trees as
their base-learners. Such models are known to be the go-to
model while dealing with structured or tabular datasets [15],
[16]. In comparison to DL models, they have shown to have
easier optimization processes, less training and tuning costs,
and mostly better prediction performance [13].

Inspired by this, we propose a supervised time series AD
framework designed for monitoring multi-sensor systems at
the presence of class imbalance. The suggested framework
combines an automatic feature engineering pipeline with
balancing schemes and tree-based ensembles. Several attempts
are reported in the literature following close ideas. In [6], a
reconstruction-based AD score is computed using principal
component analysis (PCA) applied on sensor measurements
after feature extraction. In [7], a hierarchical feature extraction
method using minimal sample representations is proposed to
train low-cost ML models for detecting anomalies in power
consumption systems. In [8], key features extracted from
Markov transforms are combined with basic statistical features
to form a vector representation of the time series data and
detect anomalies in pressure measurements coming from oil
pipelines. Though presenting promising results, neither of the
frameworks take class imbalance into consideration. Besides,
despite building tabular representations of the time series data,
the performance of the monitoring system is not assessed
using tree-based ensembles. Finally, none of the frameworks is

𝒟𝒟𝑟𝑟 = ℰ 𝐼𝐼
𝐼𝐼=1
𝑀𝑀

,𝒚𝒚

Time Series Dataset

a) Data Preparation

𝒟𝒟 = 𝑋𝑋 𝐼𝐼
𝐼𝐼=1𝑟𝑟

𝑀𝑀
,𝒚𝒚

Block Dataset

b) Feature Extraction

𝒟𝒟𝑡𝑡 = 𝒙𝒙𝐼𝐼𝑇𝑇 𝐼𝐼=1𝑟𝑟
𝑀𝑀 ,𝒚𝒚

Tabular Dataset

c) Feature Selection

𝒟𝒟𝑡𝑡𝑟𝑟
𝑡𝑡𝑡𝑡 = 𝒇𝒇′𝑘𝑘 𝑘𝑘=1

𝑛𝑛′ ,𝒚𝒚𝑡𝑡𝑟𝑟

Filtered Tabular Training Set

d) Anomaly Generation

𝒟𝒟𝑡𝑡𝑟𝑟
𝑡𝑡𝑡𝑡+ = 𝒙𝒙𝐼𝐼𝑇𝑇 𝐼𝐼=1𝑟𝑟

𝑀𝑀𝑡𝑡𝑟𝑟
+

,𝒚𝒚𝑡𝑡𝑟𝑟+

Balanced Filtered Tabular
Training Set

𝒟𝒟𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡 = 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡 𝑋𝑋𝑡𝑡𝑟𝑟

𝑡𝑡𝑡𝑡 : ,𝒚𝒚𝑡𝑡𝑡𝑡

Filtered Tabular Test Set

𝒟𝒟𝑡𝑡𝑟𝑟𝑡𝑡 = 𝒇𝒇𝑗𝑗 𝑗𝑗=1
𝑛𝑛𝑛𝑛 ,𝒚𝒚𝑡𝑡𝑟𝑟

𝑋𝑋𝑡𝑡𝑟𝑟
𝑡𝑡𝑡𝑡

𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡 ,𝒚𝒚𝑡𝑡𝒔𝒔

e) Tree-Based Ensemble

Fig. 1: Various modules of STAD-FEBTE. The input of the framework is
a potentially imbalanced time series dataset in its raw format Dr , and the
outputs are a balanced filtered tabular training dataset Dtf+

tr together with a
filtered tabular test dartaset Dtf

ts passed to a tree-based ensemble.

benchmarked versus state-of-the-art DL architectures, failing
to provide a versatile solution.

The contributions of this work are as follows. 1) We
propose a supervised framework for time series AD that
incorporates an automatic feature engineering pipeline with
tree-based ensembles; 2) The framework converts the time
series dataset into its tabular counterpart allowing it to address
class imbalance by synthesizing artificial anomalies using con-
ventional balancing schemes; 3) The framework can handle
heterogeneous multivariate sensor measurements, and it can
augment categorical features with the time series data; 4) The
proposed method is process independent, yet it is applied
to two real-world datasets collecting data from robotized
screwing processes, benchmarking the outcomes versus state-
of-the-art DL models; 5) An open source anomaly detection
dataset from a robotized wood screwing process together with
the implementation of the proposed framework are available
here1.

II. METHOD

In this section, we present Shallow Time series Anomaly
Detection by Feature Engineering, Balancing, and Tree-based
Ensembles (STAD-FEBTE), which is a supervised framework
for converting a potentially imbalanced time series dataset into

1https://github.com/AAU-RoboticsAutomationGroup/STAD-FEBTE

841

its balanced tabular counterpart and passing that to a tree-
based ensemble. The framework is shallow since DNNs are
not used in its architecture [12]. Fig. 1 shows an overview
of various modules of STAD-FEBTE. It takes a labeled
time series dataset as input, and it passes a balanced tabular
training set and a test set with original class distribution to
a tree-based ensemble. Both datasets are tabular, i.e., they
are formed by event vectors having identical features. The
framework has five major modules: Data Preparation (DP),
Feature Extraction (FE), Feature Selection (FS), Anomaly
Generation (AG), and Tree-based Ensemble (TE). First, the
DP module receives the time series dataset in its raw format as
a collection of event sets and creates data structures needed
for the upcoming modules. Second, the FE module applies
a collection of predefined unsupervised feature calculators
to convert each event block into an event vector. Third, the
resulting tabular dataset is split, and its training portion is
passed to the FS module to find its dominant features. Next
and to form a balanced training dataset, the AG module
receives the filtered output of the FS module and generates
synthetic anomalies. To avoid data leakage, samples of the test
dataset are not involved in the FS and AG modules. Finally,
the created tabular training and test datasets are passed to the
TE module.

a) Data Preparation Module: Assume the time series
dataset Dr consists of M number of events {E(I)}MI=1 and
their ground truth anomaly labels yyy = [yI]

M
I=1. Suppose event

E(I) holds the values of n distinct time series τ
(I)
j (1 ≤ j ≤

n) in their raw format. An event is a time window of an
industrial process with various sensor measurements as its
time series. Suppose ttt

(I)
j is the time vector of τ

(I)
j holding

the timestamps at which datapoints of the time series are
collected. In some cases, all time series of the event E(I)

share the same time vector, i.e., they have an identical start
time and a fixed sampling frequency. In industrial systems,
this occurs when all measurements are logged on a single
data acquisition device with a fixed clock. In some other
scenarios, however, various time series of an event might
have different time vectors. For instance, in a robotic screwing
process, the data coming from the robot controller might have
a different sampling frequency than the data collected from
the screwdriver controller. The DP module forms two different
data structures considering this notion.

Having Identical Time Vectors: Let ttt(I) = [t(I) + i]m
(I)

i=1 be
the time vector shared between all time series of the event
E(I), where t(I) is the start time of the event and m(I) is its
length. The time series sample block X(I)|m(I)×(n+2) corre-
sponding to event E(I) is built by column-wise concatenation
of the event’s fixed time vector with all of its time series,
preceded with an index column.

X(I) =

[
I111m(I) ttt(I)

[
τ
(I)
j

]n
j=1

]
where 111m(I) is the ones-vector of size m(I).

Having Varying Time Vectors: Let ttt(I)j = [t
(I)
j +i]

m
(I)
j

i=1 be the

time vector of τ (I)
j , where t

(I)
j and m

(I)
j are its start time and

length. In this case, the time series sample block X(I)|m(I)×4

is built by putting all time vectors in the third column and their
corresponding time series in the fourth column of a matrix,
preceded with two index columns one holding the index of
each time series and the other holding the index of the entire
event.

X(I) =

[
I111m(I)

[
j111

m
(I)
j

]n
j=1r

[
ttt
(I)
j

]n
j=1r

[
τ
(I)
j

]n
j=1r

]
where m(I) =

∑n
j=1 m

(I)
j is the total length of the event.

Whether having identical or varying time vectors, the time
series data matrix X is built by row-wise concatenation of
all sample blocks. This data matrix together with the ground
truth anomaly labels form the block dataset D = (X , yyy) =
([X(I)]MI=1r

, yyy) which is the input of the next module.
b) Feature Extraction Module: This module takes the

block dataset D and transforms it into a tabular dataset
where each sample block is converted to a sample vector.
For this purpose, d number of features qjk (1 ≤ k ≤ d) are
extracted from each time series of each sample block. Assume
ϕe = [ϕk]

d
k=1 is the feature extraction mapping that converts

the times series τ
(I)
j into the feature vector qqq(I)j = [q

(I)
jk]dk=1,

where each ϕk : Rm(I) → R is a single feature extractor.
The computed feature vectors from all time series of the
sample block X(I) are put together to build the time series
sample vector xxxI |(nd)×1. The design matrix Xt|M×(nd) is
constructed by sample vectors of the entire dataset. This data
matrix together with the true anomaly labels build the tabular
dataset Dt = (Xt , yyy) = ([xxxT

I]
M
I=1r

, yyy).
Choosing a set of time series feature extractors ϕk (1 ≤

k ≤ d) to build the feature extraction mapping ϕe in a general
manner and with no dependency on domain knowledge has
been an active research thread for more than a decade [17],
[18]. In development of STAD-FEBTE, we have used the
set of feature extractors proposed in [19], where a library of
almost 800 features are extracted from each univariate time
series of an event, with reported successful applications in a
variety of domains [6], [20], [21].

c) Feature Selection Module: Feature selection refers
to the process of identifying the most dominant features of
a tabular dataset to remove irrelevant features and reduce the
chances of overfitting. Several supervised [22] and unsuper-
vised [17], [23] feature selection frameworks are proposed. In
STAD-FEBTE, we employ the FRESH algorithm presented
in [24] where for every feature column, an independent
hypothesis test is performed to measure its significance in
predicting the estimated output of the dataset. Assume the
tabular dataset Dt is decomposed into the training dataset
Dt

tr = (Xt
tr , yyytr) and the test dataset Dt

ts = (Xt
ts , yyyts)

after stratified splitting. Suppose the training design matrix
Xt

tr = [fff j]
nd
j=1 including nd number of feature columns is

converted to its filtered version Xtf
tr = [fff ′

k]
n′

k=1 via the feature
selection mapping Φs : RM×(nd) → RM×(n′), where n′ < n
is the total number of selected features.

842

To avoid data leakage, samples of the test dataset should
have been kept hidden from the FS module. Now that the
dominant features are obtained using the training dataset, the
selected features can be applied to the unfiltered test dataset
Xt

ts to build Xtf
ts = Xt

ts⟨X
tf
tr ⟨:⟩⟩, where the operator X⟨:⟩

extracts all column labels of X and X⟨cols⟩ extracts feature
labels specified in cols. The filtered tabular training dataset
Dtf

tr = (Xtf
tr , yyytr) is the input of the AG module, and the

filtered tabular test dataset Dtf
ts = (Xtf

ts , yyyts) is the dataset
passed to TE module for evaluating its performance after
training. After feature selection, categorical features can be
simply augmented as new columns in the obtained filtered
design matrices Xtf

tr and Xtf
ts . Though not studied in the

paper, drastic changes in the extracted features can also be
used as an index to identify concept drift.

d) Anomaly Generation Module: Anomalies occur
on rare occasions, and hence the ML model would have
less chance to learn their underlying attributes as minority
classes [25]. The AG module aims to generate new anomalies
to tackle this. One major advantage of converting a time
series dataset into its tabular counterpart is the ability to
use conventional data balancing schemes for this purpose.
Such methods are classified into three groups: over-sampling,
under-sampling, and combined. Over-sampling normally out-
performs under-sampling [26], but it comes with the side
effect of cluster overlapping, i.e., newly generated samples
of a minority class entering the underlying cluster of another
class. Such noisy samples increase model complexity and
chances of overfitting.

To reflect on this, we use one variant of a combined balanc-
ing method proposed in [26] and implemented in [27], which
integrates SMOTE as a common over-sampling technique with
Tomek as a data cleaning approach. The objective of the
over-sampling part is to increase the size of the minority
classes, and the purpose of data cleaning is to prevent cluster
overlapping. For every pair of samples xxxI1 and xxxI2 belonging
to the same anomaly class CI , SMOTE generates a synthetic
anomaly example xxxnew = xxxI1 + λ(xxxI2 − xxxI1) using their
linear interpolation, where λ ∈ (0, 1) is a randomly generated
number. This process is repeated until the desired size of the
anomaly class is obtained. To remove overlapping, for every
pair of samples xxxI and xxxJ belonging to two different anomaly
classes CI and CJ which are distanced by d(xxxI , xxxJ) in the
feature space, Tomek aims to find another sample xxxL ∈ CI

which is closer to xxxI compared to xxxJ , i.e., d(xxxL , xxxI) <
d(xxxI , xxxJ). If not found, xxxI is raised as a potential noise
and is removed. The simple underlying idea is that if xxxI is
not invading the cluster of xxxJ , we should be able to find
a closer sample to it from its own class. Similar to the
FS module, test dataset should be kept separate from the
AG module. Intuitively, samples generated by the ML model
itself should not be used to assess its performance. Suppose
Φa : RMtr×n′ × RMtr → RM+

tr×n′ × RM+
tr is the anomaly

generation mapping which converts the filtered tabular dataset
Dtf

tr into its balanced version Dtf+

tr = ([xxxT
I]

M+
tr

I=1r
, yyy+tr), where

M+
tr −Mtr is the number of newly generated samples by the

AG module. The balanced training dataset Dtf+

tr is the dataset
passed to the TE module for training.

e) Tree-Based Ensemble: As mentioned in section I,
tree-based ensembles are among the best estimators when it
comes to tabular data. Depending on the notion of sharing
information in between base-learners while training, these
models are categorized into the two groups of parallel and
sequential methods. In this paper, we have selected an alter-
nation of bagging known as random patches (Bagging) [28],
random forest (RF) [29], and extremely randomized trees (Ex-
traTrees) [30] as parallel tree-based ensembles, and adaptive
boosting (AdaBoost) [31] and histogram-based gradient boost-
ing (GradBoost) [32] as sequential tree-based ensembles to
benchmark our datasets, all implemented in scikit-learn [33].

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

The main objective of our research is to assess the perfor-
mance of STAD-FEBTE in anomaly detection of industrial
operations. Despite the fact that the framework is process-
independent, robotized screwing is studied as a test-bed. Two
real-world datasets are benchmarked. The first one is AUR-
SAD’ which is a subset of the dataset presented in [34], and
the second one is AAUWSD which is the Aalborg University
Wood Screwing Dataset presented in this paper. Table I shows
the attributes as well various classes of each dataset. We
define process attributes as the time series data related to the
screwing process itself, and task attributes as the time series
data collected from the robot holding the screwdriver. Both
datasets are highly imbalanced and of relatively small size
(almost 2000 samples), putting the claims of STAD-FEBTE
to the test.

Datasets: To create AURSAD’, each event of the orig-
inal dataset is sliced from the beginning of its engagement
phase to the end of its clamping phases [35]. Moreover,
the dataset is filtered for its dominant process and task
features. The major motivation behind creating AAUWSD
was to include additional process attributes which play vital
roles in characterizing the screwing process [36], but they
were absent in AURSAD. Also, to reflect on the impact
of material uncertainties, AAUWSD collects data from self-
tapping screwing into wood. Moreover, the dataset covers
other commonly observed classes of anomaly. As the names
suggest, under/over-tightening occur when termination torque

TABLE I: Two screwing datasets studied in the paper

Dataset Process Attributes Task Attributes Classes

AURSAD’ insertion torque τ
TCP pose ρk=1...6
TCP twist νk=1...6

TCP wrench Fk=1...6

normal(70%)
damaged screw(11%)
extra component(9%)
missing screw(10%)

AAUWSD

insertion torque τ
insertion angle θ
insertion angle d
insertion current i

none

normal(33%)
under-tightening(34%)
over-tightening(28%)
pose anomaly(3%)
missing screw(3%)

843

1 9

6 11

Fig. 2: Process data from 4 samples of AAUWSD, where top-left is normal screwing, top-right is under-tightening, bottom-left is over-tightening, and
bottom-right is pose anomaly. The missing screw anomaly class is not included as it merely depicts noise measurements.

TABLE II: Tree-based ensembles trained by STAD-FEBTE versus DL models trained on the raw time series data

Model Accuracy Balanced
Accuracy Recall F1

ROC
AUC

ST
A

D
-F

E
B

T
E AdaBoost 0.835 0.727 0.835 0.8322 0.8915

Bagging 0.8861 0.7979 0.8861 0.8831 0.9135
ExtraTrees 0.888 0.7908 0.888 0.8839 0.8919
GradBoost 0.888 0.7916 0.888 0.8833 0.9076
RF 0.8762 0.7944 0.8762 0.8753 0.9186

D
L

Conv1D 0.8771 0.7795 0.7795 0.7945 0.8854
MHConv1D 0.8796 0.7692 0.7692 0.7818 0.8759
LSTM 0.6929 0.25 0.25 0.2046 0.5
ConvLSTM 0.8697 0.7581 0.7581 0.7779 0.8871
Tansformer 0.8771 0.7752 0.7752 0.7839 0.9178

(a) AURSAD’

Model Accuracy Balanced
Accuracy Recall F1

ROC
AUC

ST
A

D
-F

E
B

T
E AdaBoost 0.3267 0.5418 0.3267 0.3073 0.8035

Bagging 0.982 0.9893 0.982 0.982 0.9994
ExtraTrees 0.984 0.9774 0.984 0.984 0.9996
GradBoost 0.986 0.9917 0.986 0.986 0.9995
RF 0.984 0.9905 0.984 0.984 0.9996

D
L

Conv1D 0.9248 0.5772 0.5772 0.5634 0.975
MHConv1D 0.9323 0.5759 0.5759 0.5619 0.9695
LSTM 0.6266 0.4429 0.4429 0.3691 0.8048
ConvLSTM 0.4586 0.2 0.2 0.1082 0.5
Tansformer 0.9298 0.5795 0.5795 0.5648 0.9748

(b) AAUWSD

of the process is lower/higher than the required fastening
torque. On the other hand, pose anomaly occurs due to the
misalignment of the robot’s end effector with respect to the
workpiece resulting in slippage. Fig. 2 illustrates time series
data for a normal screwing process together with three of the
anomaly classes of AAUWSD.

Evaluation Metrics: In anomaly detection, false nega-
tives are faulty processes which are missed to be detected, and
false positives are non-faulty processes which are mistakenly
labeled as anomaly. Obviously, the significance of lowering
false negatives outweighs the importance of reducing false
positives. There is a correlation between false positive and
false negative rates, and an ML model cannot minimize
both at the same time. In this regard, accuracy can easily
become a misleading metric, especially while dealing with
imbalanced datasets. To address this, we have evaluated each
model using 4 extra metrics: balanced accuracy which takes
class proportion into account, recall which measures the true
positive rate of each class, f1-score which computes the
harmonic mean of precision and recall, and ROC-AUC score
which returns the area under the true positive-false positive
curve after altering the decision function threshold. Since the
task at hand is multi-class classification, all metrics perform
weighted averaging taking class proportions into account, and
the ROC-AUC score is computed using one-versus-all.

Main Results: Table II summarizes the results of vali-
dating tree-based ensembles mentioned in section II trained
by STAD-FEBTE on the two datasets studied in the paper.
For screwing operation, each event is created by rolling a
dynamic window on sensor measurements where its size is
adjusted by the length of a complete process. All models are
trained with 500 number of estimators. The hyperparameters
of the models trained on AURSAD’ are tuned using grid-
search combined with cross validation. For AAUWSD, all
models are trained using default hyperparametrs. Due to the
fact that deep learning models are capable of learning and
automatically extracting features and complex patterns in time
series data via a hierarchy of non-linear transformations [37],
various DL models are also trained and validated on the
raw time series data Dr. For this purpose, we have used 1-
dimensional convolutional neural nets (Conv1D) [38], multi-
head 1-dimensional convolutional neural nets (MHConv1D),
long short-term memory networks (LSTM) [39], convolutional
LSTM (ConvLSTM) [40], and transformers [41]. All models
are implemented in TensorFlow and are trained with learning
rate of 0.0001, patience of 30, a batch size of 8, and for
100 epochs. For MHConv1D, three different head sizes, 3,
5, and 11 are selected to aid the model in reading and
interpreting time series data at different resolutions. The
vanilla transformer is designed with 6 encoder blocks and

844

AdaBoost Bagging ExtraTrees GradBoost RF

0.68
0.70
0.72
0.74
0.76
0.78
0.80

B-
Ac

cu
ra

cy

without FS and AG
with FS
with FS and AG

AdaBoost Bagging ExtraTrees GradBoost RF
0.76
0.78
0.80
0.82
0.84
0.86
0.88

Re
ca

ll

without FS and AG
with FS
with FS and AG

AdaBoost Bagging ExtraTrees GradBoost RF

0.78
0.80
0.82
0.84
0.86
0.88

F1 without FS and AG
with FS
with FS and AG

AdaBoost Bagging ExtraTrees GradBoost RF

0.82
0.84
0.86
0.88
0.90
0.92

RO
C-

AU
C

without FS and AG
with FS
with FS and AG

Fig. 3: Impact of FE, FS, and AG modules measured on AURSAD’

normal damaged extra missing

normal

damaged

extra

missing

0.94 0.045 0.0085 0.0085

0.35 0.61 0.037 0

0.35 0.022 0.63 0

0.056 0 0 0.94

Bagging trained on t
tr

normal damaged extra missing

normal

damaged

extra

missing

0.94 0.037 0.011 0.0085

0.35 0.63 0.019 0

0.3 0.022 0.67 0

0.037 0.019 0 0.94

Bagging trained on tf +
tr

Fig. 4: Bagging trained by STAD-FEBTE without and with FS&AG
modules for AURSAD’

4 heads with head size of 256.
We observed that in both datasets, STAD-FEBTE outper-

forms DL architectures. For AURSAD’, while ExtraTrees has
better results in three metrics, it does not perform well in
maximizing the ROC-AUC score. Bagging, on the other hand,
has the best average performance among all models, and RF
stands in the second place. To emphasize the impact of various
modules of the framework on detecting anomalies, in Fig. 3
each model is trained and validated on three pairs of datasets
produced after three major modules of STAD-FEBTE, i.e.,
FE, FS, and AG. It is observed that the performance of all
models with respect to all metrics is improved after passing
training data through the FS module. In other words, removing
redundant features from the tabular dataset Dt

tr and projecting
samples into a subspace of the original feature space provides
a simpler classification task to solve. The same trend is
observed for the AG module with the exception of ROC-
AUC score, where negligible drops of almost 1% are observed
in three models. The module aims to balance the dataset
by generating synthetic anomalies, and at the same time
to reduce the negative impact of this process by removing
overlapping samples. This improvement is also observed in
Fig. 4 where the ability of the Bagging classifier to detect
damaged and extra component anomalies is improved by
2% and 4% respectively, after inclusion of the FS and AG
modules.

The performance difference between STAD-FEBTE and the
DL models becomes more significant for AAUWSD. With

normal under over pose missing

normal

under

over

pose

missing

0.99 0.0061 0 0 0

0.036 0.96 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

GradBoost trained on tf +
tr

normal under over pose missing

normal

under

over

pose

missing

0.97 0.024 0.0079 0 0

0.034 0.92 0.047 0 0

0 0 1 0 0

0 0.12 0.88 0 0

0 0 1 0 0

MHConv1D trained on r

Fig. 5: GradBoost trained by STAD-FEBTE versus MHConv1D trained on
raw data for AAUWSD

the exception of AdaBoost, evaluation scores of all tree-
based ensembles exceed 97% in terms of all metrics. For
DL models, even though Conv1D and MHConv1D result in
relatively high accuracies, they are dominated by tree-based
ensembles when it comes to balanced accuracy, recall, and
f1-score. This is also observed in Fig. 5 where MHConv1D
mistakenly detects all missing and 88% of pose anomalies as
over-tightening samples, indicating why accuracy can become
a misleading factor in imbalanced AD. Various reasonses
can be addressed to justify this performance. First, these
two classes are minorities which occupy only 6% of the
dataset population. Where STAD-FEBTE performs balancing
to address class-imbalance, the complex architecture of DL
models requires more number of samples from each class to
learn their underlying features. Second, missing screw and
pose anomaly samples have significantly (almost 2500) more
number of datapoints in comparison to other classes. Where
the FE module of STAD-FEBTE extracts the same number
of features from all sensor measurements irrespective of their
length, deep learning pipelines tackle this by zero padding
or up/down sampling of the time series signals. The resulted
misalignment in created sample tensors can also become a
source of weak performance.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we presented STAD-FEBTE as a supervised
framework for time series anomaly detection. Benchmarking
the pipeline on two industrial datasets, it was observed that
converting the time series dataset into its tabular counterpart
while dealing with class imbalance, and passing the obtained
datasets to tree-based ensembles can outperform state-of-the-
art deep learning models. There are various directions to
extend the presented outcomes. First, the framework should
be applied to other industrial processes to assess how gen-
eralizable it is. Second, since factory floor data lacks ground
truth labels and generating anomalies is costly and sometimes
infeasible depending on the process at hand, the next step is
to develop an unsupervised version of the framework. Finally,
other sources of process attributes such as images or acoustic
data should be integrated into the framework to build even
better monitoring systems.

845

REFERENCES

[1] K. Shaukat, T. M. Alam, S. Luo, S. Shabbir, I. A. Hameed, J. Li,
S. K. Abbas, and U. Javed, “A Review of Time-Series Anomaly
Detection Techniques: A Step to Future Perspectives,” in Advances in
Information and Communication, ser. Advances in Intelligent Systems
and Computing, K. Arai, Ed. Cham: Springer International Publishing,
2021, pp. 865–877.

[2] A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano, “A Review
on Outlier/Anomaly Detection in Time Series Data,” ACM Computing
Surveys, vol. 54, no. 3, pp. 1–33, Apr. 2022.

[3] M. Dao, N. H. Nguyen, N. M. Nasrabadi, and T. D. Tran, “Collaborative
Multi-Sensor Classification Via Sparsity-Based Representation,” IEEE
Transactions on Signal Processing, vol. 64, no. 9, pp. 2400–2415, May
2016.

[4] J. Cao, W. Li, C. Ma, and Z. Tao, “Optimizing multi-sensor deployment
via ensemble pruning for wearable activity recognition,” Information
Fusion, vol. 41, pp. 68–79, May 2018.

[5] J. P. Barddal, H. M. Gomes, and F. Enembreck, “A survey on feature
drift adaptation,” in 2015 IEEE 27th International Conference on Tools
with Artificial Intelligence (ICTAI). IEEE, 2015, pp. 1053–1060.

[6] H. Y. Teh, K. I.-K. Wang, and A. W. Kempa-Liehr, “Expect the
Unexpected: Unsupervised Feature Selection for Automated Sensor
Anomaly Detection,” IEEE Sensors Journal, vol. 21, no. 16, pp. 18 033–
18 046, Aug. 2021.

[7] Z. Ouyang, X. Sun, and D. Yue, “Hierarchical Time Series Feature
Extraction for Power Consumption Anomaly Detection,” in Advanced
Computational Methods in Energy, Power, Electric Vehicles, and Their
Integration, ser. Communications in Computer and Information Science,
K. Li, Y. Xue, S. Cui, Q. Niu, Z. Yang, and P. Luk, Eds. Singapore:
Springer, 2017, pp. 267–275.

[8] D. Zang, J. Liu, and H. Wang, “Markov chain-based feature extraction
for anomaly detection in time series and its industrial application,” in
2018 Chinese Control And Decision Conference (CCDC), Jun. 2018,
pp. 1059–1063.

[9] M. Canizo, I. Triguero, A. Conde, and E. Onieva, “Multi-head
CNN–RNN for multi-time series anomaly detection: An industrial case
study,” Neurocomputing, vol. 363, pp. 246–260, Oct. 2019.

[10] D. Kim, H. Yang, M. Chung, S. Cho, H. Kim, M. Kim, K. Kim,
and E. Kim, “Squeezed Convolutional Variational AutoEncoder for
unsupervised anomaly detection in edge device industrial Internet of
Things,” in 2018 International Conference on Information and Com-
puter Technologies (ICICT). DeKalb, IL: IEEE, Mar. 2018, pp. 67–71.

[11] Z. Chen, D. Chen, X. Zhang, Z. Yuan, and X. Cheng, “Learning Graph
Structures With Transformer for Multivariate Time-Series Anomaly
Detection in IoT,” IEEE Internet of Things Journal, vol. 9, no. 12,
pp. 9179–9189, Jun. 2022.

[12] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon,
W. Samek, M. Kloft, T. G. Dietterich, and K.-R. Müller, “A Unifying
Review of Deep and Shallow Anomaly Detection,” Proceedings of the
IEEE, vol. 109, no. 5, pp. 756–795, May 2021.

[13] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” Information Fusion, vol. 81, pp. 84–90, May 2022.

[14] O. Sagi and L. Rokach, “Ensemble learning: A survey,” WIREs Data
Mining and Knowledge Discovery, vol. 8, no. 4, Jul. 2018.

[15] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[16] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” Advances in
neural information processing systems, vol. 31, 2018.

[17] B. D. Fulcher, M. A. Little, and N. S. Jones, “Highly comparative
time-series analysis: The empirical structure of time series and their
methods,” Journal of the Royal Society Interface, vol. 10, no. 83, p.
20130048, Jun. 2013.

[18] C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher,
and N. S. Jones, “Catch22: CAnonical Time-series CHaracteristics:
Selected through highly comparative time-series analysis,” Data Mining
and Knowledge Discovery, vol. 33, no. 6, pp. 1821–1852, Nov. 2019.

[19] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time Series
FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A
Python package),” Neurocomputing, vol. 307, pp. 72–77, Sep. 2018.

[20] A. W. Kempa-Liehr, J. Oram, A. Wong, M. Finch, and T. Besier, “Fea-
ture Engineering Workflow for Activity Recognition from Synchronized
Inertial Measurement Units,” in Pattern Recognition, ser. Communica-
tions in Computer and Information Science, M. Cree, F. Huang, J. Yuan,
and W. Q. Yan, Eds. Singapore: Springer, 2020, pp. 223–231.

[21] D. E. Dempsey, S. J. Cronin, S. Mei, and A. W. Kempa-Liehr,
“Automatic precursor recognition and real-time forecasting of sudden
explosive volcanic eruptions at Whakaari, New Zealand,” Nature Com-
munications, vol. 11, no. 1, p. 3562, Dec. 2020.

[22] S. Huang, “Supervised feature selection: A tutorial,” Artificial Intelli-
gence Research, vol. 4, Mar. 2015.

[23] X. Huang, L. Wu, and Y. Ye, “A Review on Dimensionality Reduction
Techniques,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 33, no. 10, p. 1950017, Sep. 2019.

[24] M. Christ, A. W. Kempa-Liehr, and M. Feindt, “Distributed and parallel
time series feature extraction for industrial big data applications,” Asian
Conference on Machine Learning (ACML), May 2017.

[25] R. C. Prati, G. E. Batista, and M. C. Monard, “Class imbalances
versus class overlapping: An analysis of a learning system behavior,” in
Mexican International Conference on Artificial Intelligence. Springer,
2004, pp. 312–321.

[26] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the
behavior of several methods for balancing machine learning training
data,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 20–29,
Jun. 2004.

[27] G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 559–563, 2017.

[28] G. Louppe and P. Geurts, “Ensembles on random patches,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2012, pp. 346–361.

[29] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[30] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[31] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,”
Statistics and its Interface, vol. 2, no. 3, pp. 349–360, 2009.

[32] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] B. Leporowski, D. Tola, C. Hansen, and A. Iosifidis, “Detecting
Faults During Automatic Screwdriving: A Dataset and Use Case of
Anomaly Detection for Automatic Screwdriving,” in Towards Sus-
tainable Customization: Bridging Smart Products and Manufacturing
Systems. Cham: Springer International Publishing, 2022, pp. 224–232.

[35] L. D. Seneviratne, F. A. Ngemoh, S. W. E. Earles, and K. A. Althoefer,
“Theoretical modelling of the self-tapping screw fastening process,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science, vol. 215, no. 2, pp. 135–154, Feb.
2001.

[36] T. Lázár and J. Nagy, “THE COMPARISON OF THE KNOWN MOD-
ELS OF SELF-TAPPING SCREW JOINTS,” Machines. Technologies.
Materials., vol. 11, no. 5, pp. 240–245, 2017.

[37] J. C. B. Gamboa, “Deep learning for time-series analysis,” arXiv
preprint arXiv:1701.01887, 2017.

[38] W. Tang, G. Long, L. Liu, T. Zhou, J. Jiang, and M. Blumenstein,
“Rethinking 1d-cnn for time series classification: A stronger baseline,”
arXiv preprint arXiv:2002.10061, 2020.

[39] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The performance of
lstm and bilstm in forecasting time series,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 3285–3292.

[40] Y. Wang, L. Sun, D. Peng, and K. Rajakani, “A multihead
convlstm for time series classification in ehealth industry 4.0,” Wirel.
Commun. Mob. Comput., vol. 2022, jan 2022. [Online]. Available:
https://doi.org/10.1155/2022/8773900

[41] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Trans-
formers in time series: A survey,” arXiv preprint arXiv:2202.07125,
2022.

846

