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Abstract — To deal with changes and uncertainties in 
controlling a Unmanned Aerial Vehicle (UAV) reliably, a new 
platform is proposed to synergize human and machine 
intelligence, and it is based on a  new Brain Computer Interface 
(BCI) to (1) quantify human’s affections in arbitrating human 
and machine intelligence and alleviating adverse effects by 
human’s mistakes, (2) fuse human and machine’s control 
commands in different frequencies seamlessly and generate 
control commands at motor levels for real-time performance. In 
this paper, existing works on BCIs are discussed to identify the 
limitations of traditional Human-Machine Interactions (HMIs), 
a new framework of HMIs is proposed for a supervisory control 
of UAV; in particular, it is equipped with an arbitrating 
mechanism to optimize the shared control of UAVs based on 
quantified states of human’ affection. It is expected to improve 
adaptability, agility, and reliability, responsiveness, and 
resilience of UAVs. This is an ongoing project, and the 
development platform for the feasibility study of the proposed 
method is introduced as our plan for future work.  

Keywords: Human machine interactions (HMI); brain 
control interface (BCI); unmanned aerial vehicles (UAVs); 
supervisory control; machine learning (ML); artificial 
intelligence (AI); affection qualification  

I. INTRODUCTION 

A machine or system for NASA mission is most likely tele-
operated where humans and computers share the authorities in 
controlling. Existing techniques for shared human and 
machine controls are mostly implemented by human-machine 
interfaces (HMIs) where humans are engaged in machine 
controls by some intermediate hardware or software such as a 
driving wheel, pedal, and gear shift in an advanced driver 
assistance systems (ADAS). It will be desirable to advance 
brain computer interface (BCI) so that the brain activities can 
be captured and interpreted to control a machine directly.   This 
paper investigate the applications of BCI in operating space 
vehicles such as unmanned aerial vehicles (UAVs) in the real-
world environment with high-level uncertainties and 
dynamics.  

Since the first target drone Lightning Bug was launched by 
Air Force in 1960s, more and more UAVs have been 
developed, and UAVs have gained their popularity due to their 
successful applications and potentials in providing base 
security, force protection, and reconnaissance. However, 
UAVs suffer from shortcomings in reliability and adaptability 
to deal with uncertainties and unanticipated events in dynamic 
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environments. For example, UAVs are susceptible to extreme 
weather conditions and vulnerable to the threats from a kinetic 
or non-kinetic weapon. The reliability and adaptability may be 
reduced more significantly for large, low-altitude, and slow-
moving UAVs in a hostile environment, and the statistical 
investigation by Williams [1] showed that 75% of recent 
accidents occurring to UAVs were due to human machine 
interface (HMI). Next-generation UAVs must enhance 
airworthiness and survivability that will be consistent with 
mission priorities significantly [2]. We hypothesize that the 
aforementioned problems can be alleviated by (1) developing 
a brain-computer interface (BCI) for a human to control a 
UAV directly by brain activities and (2) developing an 
arbitrating mechanism to weight and fuse the commends from 
a human and computer for shared controls. 

II. UNMANNED AERIAL SYSTEMS AND CONTROLS  

The U.S. military begun to develop various UAVs in 1960s 
and nearly 3,500 Lightning Bugs were used for tactical 
reconnaissance in the Vietnam War. The earlier control 
systems for UAVs such as the D-21 Tagboard/Senior Bowl 
program and Compass Arrow program were proven some 
unsatisfactory performance such as overrun cost, testing 
failures and invalidated requirements [3]. UAVs were not 
rapidly developed until some Israel unmanned systems were 
used to destroy the opponents’ air defenses successfully in 
early 1980s [4]. The RQ-1 Predator model was developed by 
the joint U.S. and Israeli force, and it was used as an 
intelligence, surveillance, and reconnaissance (ISR) platform 
in 1996. The RQ-1 Predator model was later followed by the 
models of MQ-1 Predators and RQ-4 Global Hawks in 1998 
and 2004, respectively [5].  

Some UAVs exemplified in Fig.1 have become most 
demanded military systems to fight against terrorism or fulfill 
complex space missions such as tracking, identifying, fixing, 
or targeting objects or locations. By a comparison of the 
investment in the last decade, the Department of Defense 
(DoD) has almost tripled its investment in advancing UAVs; 
it has been estimated that the global UAS market in 2017 was 
expanded significantly with a total expenditure of 7.3 billion 
for new UASs. The US military is among the greatest 
contributors to the rapid growth of UASs; in particular, the 
civil UAS market was expected to grow rapidly in the next 
decade [6]. For example, the US Air Force was partnered with 
the German Air Force to develop an RQ-4 “Euro Hawk” as an 
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unmanned combat air vehicle (UCAV), and the US Navy and 
Special Operations Command (USSOCOM) were expanded 
their funds in advancing unmanned aerial systems [7].  

Despite of the significance improvements of modern 
UAVs in comparison with early manned aircrafts, how to 
improve the reliability in operation still poses a big challenge 
to the controlling system of an UAV, it is susceptible to 
unpredicted weather conditions and vulnerable to an attack by 
kinetic or non-kinetic weapon, and it affects the survivability 
of UAVs, specifically large-size, low-altitude, and low-speed 
UAVs. The statistical data showed that while the overall 
accident rate was decreasing gradually, the average accident 
rate of RQ-1/MQ-1 Predators was still high with around 24 
mishaps per 100,000 flying hours in conservative years, and 
the accident rates of predators and Global Hawks were at an 
order of magnitude greater than those of manned aircrafts. The 
capabilities of UAVs must be improved at multiple aspects 
such as (1) developing low observable systems, dynamically 
planning missions, and equipping air-to-air self-defensing to 
mitigate the vulnerability to enemy attacks, (2) advancing the 
intelligence of UAVs via effective human machine 
collaboration, high-performance sensors and processors, smart 
mission management tools to deal with complexity, 
uncertainties and dynamics [8, 9]. 

III. PROPOSED BRAIN COMPUTER INTERFACE (BCI) FOR 

SUPERVISORY CONTROLS  

Over 75% of the accidents occurring to UAVs were due to 
human machine interface (HMI). To improve the reliability 
and survivability of an UAV, it is logic naturally to re-examine 
human’s roles in a shared control of UAVs. Fig. 3 shows the 
schematic of traditional human-machine interface of an UAV. 
A multiple-layer control architecture is usually deployed to 
control the UAV: the lower level controls the operations of 
actuators and motors, the upper level takes the pilot’s 
intentions such as ‘wide search’, ‘deep search’, ‘return to 
home’, ‘return and search’, and ‘directed search’ [10] and 
converts these intentions into the movements and actions of 
the UAV, and the intermediate level translates the behaviors 
of the whole UAV into those of the components at the motor-
level; the examples of control commands at this level are 
‘taking off’, ‘landing’, ‘cruising’, ‘descending’, ‘ascending’, 
‘turning left’, ‘turning right’, and ‘accelerating’, ‘decelerating’ 
[11,12]. The control architecture supports the shared control in 
sense that the high-level decisions are made by the pilot for the 
intentions of UAV operations, and the embedded UAV 
controller interprets the pilot’s commands into the actions. All 
of the communications must be supported by either of a 
sophisticated wireless network or a global positioning system 
(GPS). It is clear that the control loop (i.e. loop II in Fig. 1) at 
the high-level is not fully closed since the discrepancy of 
expected and actual performance of UAV can only be justified 
by the pilot own. In the traditional human-machine 
architecture, there is no effective way to fix either the error in 
human’s decision or the error when the pilot provides the 
inputs to the control system via a control console.   

It can be seen from Fig. 1 that a low reliability or 
survivability of UAV is attributed greatly by the lack of 
appropriate mechanism to justify (1) if the pilot’s intentions 

are input to the controlling system correctly via human-
machine interfaces and/or (2) if the pilot makes decisions at 
the full capability of operating an UAV. In other words, even 
if the pilot’s command is a mistake or a correct decision is 
wrongly input, the UAV controller just follows the command 
to fail the mission.  

 

 
Fig. 2 shows the schematic of the proposed supervisory 

controls for an UAV. In comparison with the human-machine 
interfaces in traditional UAVs in Fig. 1, three new 
components are incorporated into a supervisory control to 
minimize the adverse effect of human factors. Firstly, new 
instrumentation is introduced to monitor and acquire brain 
signals, and brain signals will be processed to serve for two 
purposes, i.e., (1) identify the pilot’s intentions directly and 
use them in controls to eliminate the probability of making 
mistakes in inputting a command and (2) classify the pilot’s 
physical or physiological conditions and determine the 
corresponding weight in the arbitrating mechanism for shared 
controls. Secondly, an arbitrating mechanism is introduced for 
the computer to take over the responsibilities of high-level 
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decision-making supports when brain signals indicate the 
pilot becomes incapable of making right decisions for UAV 
operations. Thirdly, the capabilities of an UAV controller 
must be expanded to incorporate the implementations when 
no right command will be issued by the pilot; in such cases, a 
mirror UAV controller is introduced in the arbitrating 
mechanism, so that high-level decisions will also be made by 
computers instead of incapable pilot at given moments. 
Integrating above three components allows to close the high-
level control loop (i.e., II in Fig. 2) to tackle with the adverse 
effects of human factors in supervisory controls of UAVs.         

IV. DEVELOPMENT OF BCI  

Two critical tasks to make the proposed supervisory 
controls successfully are to (1) automate high-level decision-
making processes in uncertain environment when the pilot is 
absent and (2) develop an arbitrating mechanism for a trade-
off the human and computer’s authority in shared controls 
based on a human’s physical and physiological conditions.  

A. Brain Signals  

A brain consists of a forebrain, a midbrain, and a hindbrain. 
The hindbrain controls the vital functions such as heart rate 
and respiration of body. It includes brain stem, upper spinal 
cord, and a cerebellum that is a wrinkled ball of tissue. The 
forebrain is the largest and most developed part of brain; it 
consists of cerebrum and its structures beneath. A half of the 
cerebrum divided by a deep fissure. It can be further divided 
into six sections or lobes as frontal brain, motor cortex, 
parietal lobes, somatosensory cortex, occipital lobes, and 
temporal lobes whose specialized functions [13,14]. 

B. Data Acquisition  

The methods used to acquire brain signals can be (i) 
noninvasive where sensors are placed on the scalp to measure 
electrical potentials by brain (i.e., electroencephalogram 
(EEG)) or magnetic field (i.e., electromyogram (MEG), (ii) 
semi-invasive where the electrodes of sensors are placed on 
the exposed surface of brain (i.e., electrocorticography 
(ECoG)), and (iii) invasive where the micro-electrodes of 
sensors are placed directly into the cortex to measure the 
activities of a single neuron. As shown in Fig. 3, different types 
of signals are acquired from different ranges; therefore, these 
signals reflect different brain activities. 

 

Brain signals from different sources are also 
distinguished with each other in terms of temporal and spatial 
resolutions [15]. The performances of bio-signals such as 
EEG, MEG, EOG, and ECG are also affected by many other 
factors. For example, Fang et al. [16] investigated the impact 
of subject gender on the performance of electrooculography 
(EOG), and male-group showed better performance than 
female-groups in classifying tasks. The selection of brain 
signals must also consider many other factors such as 
reliability and costs. For example, fMRI is capable of 
achieving a better spatial resolution but lower temporal 
resolution in comparison with MEG or EEGs offer a high 
temporal resolution. The need of data processing is another 
concern. For example, the quality of a brain signal acquired 
non-invasively is significantly affected by some random 
factors in environments and the data must be preprocessed to 
suppress noises before it can be used to extract and classify 
features. The portability is also critical to mobile applications, 
from this perspective, the instruments for fMRI and MEG 
signals are usually too bulky and expensive, and EEG 
becomes most attractive due to its affordability and portability 
[15]. Common electrophysiological signals used to 
understand brain activities include bio-signals by micro-
array, positron emission tomography (PET), surface 
electromyography  (sEMG), electroencephalography (EEG), 
electrocardiography (ECG), magnetoencephalography 
(MEG), functional Near-InfraRed spectroscopy (fNIRs), 
Electrooculography (EOG), functional Magnetic Resonance 
Imaging (fMRI), and Galvanic Skin Response (GSR) [17-19].  

EMG was known to the researchers in human-machine 
interface from 1990s. Early EMG signals were collected from 
three arm muscles, and processed by sampling, high-pass 
filtering, low-pass filtering, and amplifications to identify 
hand gestures such as opening, closing, and relaxation of 
hand; EMG was considered a reliable approach to detect 
muscle movement [20]. EEG has its advantages of high-time 
resolution, portability, and the cost-effectiveness of brain 
signal acquisitions in comparison with functional magnetic 
resonance imaging (fMRI) and magnetoencephalography 
(MEG). EEG-based controls are classified into two types, i.e., 
evoked (exogenous) and spontaneous (endogenous). An 
evoked system used external stimulation such as visual, 
sensing, or auditory stimulation, and the responses by brains 
are identified by BCI to determine user’s intention. A 
spontaneous system takes control actions based on mental 
activities without external simulations. Two main categories 
of evoked signals are visually evoked potentials (VEPs) and 
event related potentials (EPRs); moreover, steady-state VEP 
(SSVEP) are the most widely used to identify users’ intention 
quickly with minimum training [21-23].  

The body movements are also controlled by brain signals; 
therefore, brain signals can also be monitored by using the 
sensors placed on other parts of a human body/ EOG measure 
the corneo-retinal standing potential spanned between the 
front and the back of the human eye, and the primary 
applications of EOG are for ophthalmological diagnosis and 
analyzing eye movements. ECG is a physiological signal 
representing electrical activity of a heart in real time; the most 
commonly used setup to capture ECG is to use nine sensors 

Scalp 

Skull 
Dura 

Arachnoid 

White 
matter 

Pie 

EEG  

ECoG (epidural 
or subdural) 

Intraparenchymal 
(single neuron or 
local field 
potential)  

Cortex 

LAYERS TYPES of SIGNALS 

Fig. 3. Brain Layers and Corresponding Types of Signals [13]  

1069



  

distributed on left area, left leg, and right leg called a 12-lead 
ECG device. Photoplethysmography (PPG) can be 
alternatively used to detect a change of microvascular blood 
volume in tissues as electrical signals related to brain 
activities. Similarly, a galvanic skin response (GSR) is known 
as skin conductance (SC) or electrodermal activity (EDA) to 
record to a body response to environmental changes; skin 
conduction is not subject to conscious control but depends on 
the variation of sweat reaction that reflects the changes in a 
sympathetic nervous system, i.e., the outputs of a sympathetic 
nervous bursts lead to the changes of skin conductance [24]. 
The adaptive control of through, rational (ACTR) theory was 
used to analyze a pilot’s cognitive processes for situational 
awareness (SA) based on the feedbacks from external sensors 
such as eye movements by a vision system. Eye-movements 
such as fixation/saccade ratio are closely related to the ability 
of information perception and extraction; therefore, 
measuring and assessing eye-movements helped to 
characterize the pilot’s SA quantitatively [25]. An artificial 
robotic skin was engineered by Cheng et al. as a multi-modal 
sensing instrument; it was networked with large-area skin 
patches to acquire and process a large amount of tactile data 
in sensor-driven robotic controls. Anomalous signals often 
occur to noninvasive bio-signals and this will degrade the 
performance of BCI; moreover, bio-signals may not be 
monitored continuously. Sagha et al. [26] suggested detecting 
anomalous data samples caused by misplaced electrodes, 
degraded impedance, and loosen connectivity online to 
minimize anomalous signals; they measured the deviation of 
data in each channel to evaluate its reliability and add the 
corresponding weight in data processing. 

 When brain signals are collected from multiple sources, 
and these signals have to be fused to extract features; it will 
bring the challenges to assure security, reliability, and privacy 
of brain signals [27]. Kuan et al. [28] discussed the challenges 
when a large amount of brain signals from neurons would be 
recorded and transferred over the Internet; they proposed a 
wireless data telemetry system to ensure a high data rate at an 
affordable power consumption of an implantable device. Cui 
et al. [29] proposed a framework to fuse multimodal signals 
(i.e., EEG, EMG, and MMG) and extract features associate 
with the multi-joint motions of lower limbs. 

C. Classification, Detections and Applications  

In developing a BCI, a preliminary task is to select and 
acquire right signals that are associated with (i) a human’s 
intentions to control an object or (ii) a human’s physical or 
psychological conditions that affect decision-making activities 
in an environment. On the other hand, one has to understand 
brain signals thoroughly before they can be processed, 
classified, analyzed and mine to extract expected features 
adequately. One of the most critical features of a brain signal 
is its frequency range in a temporal domain since most of the 
BCI applications require real-time controls [13, 30-32]. 

Numerous researches have worked on the development 
of AI or ML models to decode brain singles for various BCIs. 
For examples, Owusu et al. [33] surveyed the techniques used 
to recognize humans’ facial expressions; humans’ emotions 
were recognized from physiological signals (EEG, ECG, 

EMG, fMRI, MRI, PET, MEG, and NIRS). Hwaidi and Chen 
[32] proposed a convolutional neural network (CNN) to 
analyze and classify Motor Imagery (MI) signals; CNN was 
incorporated in an auto-encoder to classify EEG signals, and 
CNN was trained to replicate its inputs to outputs by encoding 
and decoding. Fu et al. [34] combined EEG and near infrared 
spectroscopy (NIRS) to decode brain signals in the 
sensorimotor areas; NIRS was acquired when the subject 
imagined to adjust force and speed in hand clenching, and the 
features of NIRS and EEG were combined in a state vector 
machine (SVM) to classify imagined force and speed at three 
levels. When ML is used to classify brain signals, raw data 
must be abundant to achieve expected accuracy and it might 
become a practical issue not to have sufficient data. Li et al. 
[35] address this by data augmentation to improve the 
utilization of existing datasets, and contrastive learning was 
adopted to extract features from limitedly labeled data. 

Physiological signals are widely used to recognize 
humans’ emotions in HMIs, autonomous driving, healthcare 
and entertainments. For examples, Hu et al. [36] classified 
psychophysiological signals to determine the trust level in the 
human and machine collaborations. Ikenishi et al. [37] 
processed physiological and vision signals to identify a 
driver’s intentions on pedals, steering wheels. Jose and Lopes 
[38] used the feedbacks from the lower lip of a user in a 
human computer interface; it was design for patients with 
tetraplegia, and its application to control an input device was 
evaluated against an ISO standard on the Fitts’ law. To reduce 
power consumption in data processing over embedded 
platform, Kartsch et al. [39] developed a parallel ultra-low 
power system-on-chip with nine RISC-V cores to perform 
canonical correlation analysis (CCA) over SSVEP. 
Corresponding EEG signals from different channels helped to 
increase the accuracy of classification; Wang et al. [40] 
developed used partial directed coherence (PDC) to establish 
a causal network based on their functional connectivity, and 
features were then extracted from the network using common 
spatial patterns (CSP).  

 Motor imagery (MI) reflects brain activities relevant to 
motions of limbs; therefore, MI signals were used widely to 
control neuro-rehabilitative, prosthetic, and haptic devices; 
MI signals acquired from brain are decoded in to motion 
commands to control a machine or device. Jeong et al. [41] 
developed CNN to classify rotational movements of a 
subject’s forearm using EEG signals. The existing techniques 
to select and extract features from MI-based EEG were 
surveyed by Padfield et al. [21]. Minati et al. [42] developed 
a consumer-grade wearable device to acquire EOG, jaw 
EMG, EEG, and head movement simultaneously; this showed 
its potentials of using BCIs to control assistive robots. In 
prototyping, a robotic arm with 6 DOF was controlled in form 
of four control modes based on human’s intentions 
recognized from multi-source biosignals. Wang et al. [43] 
applied tactile stimuli on a subject’s forearm to record and 
decode the subject’s response by EEG signals; they found a 
high-level accuracy in detecting a location of touch based on 
EEG signals.   

Despite of the relevance of MI signals to the motions of 
the subject’s limbs, the kinematic structure of a machine is 
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usually different from that of limbs, and it is unrealistic to 
control the machine directly based on the identified human’s 
intentions. In fact, it still poses a significant challenge to 
decode kinematic information from brain signals to control a 
machine with multi-degrees of freedom. In the BCI by Mao 
et al. [44], human’s intentions were identified from P300 and 
SSVEP signals, machine intelligence was mined by a fuzzy 
logic algorithm to process multi-source images, human’s 
intentions and machine intelligence were fused to (1) alleviate 
human’s mental workload and (ii) enhance the performance 
robotic controls. Moritz et al. [45] discussed the barriers in 
developing BCIs to restore patients’ motor or sensory 
functions. They found three main challenges were to (1) 
capture right neural activities adequately, (2) decode motion 
intentions in the presence of plasticity, and (3) address social 
and ethical concerns in market entrances. 

V. DEVELOPMENT PLATFORM  

The setup of the proposed platform consists of two 
instrumentations to acquire brain signals, i.e., (1) Epoc X 14 
Channel Mobile Brainwear by Emotive and (2) Muscke 
SpikerShield by Backyard Brains; three devices to be tested 
by a BCI-based supervisory controller are (1) a collaborative 
robot by Elephant Robotics, (2) an educational robot arm by 
TinkerKit Barccio, and (3) a small-size drone with HD 
camera by Thames and Kosmos Robotics. Everything will be 
networked as IoT for data transmission and communications 
[46, 47].  

 
The proposed supervisory control in Fig. 4 includes three 

main functional components in comparison with a 
conventional control system for an autonomous machine:  

1) a comprehensive BCI is developed to collect brain 
signals from multi-sources not only to (i) represent a 
human’s intentions in controlling a machine based on 
specified mission and the subject’s Situation Awareness 
(SA) but also to (ii) reflect the human’s affections for the 
trustiness and quality of the subject’s control decisions.  

2) A set of ML algorithms will be developed to (2) classify 
and extract the human’s intentions and (3) quantify the 
human’s affections that are associated with the trustiness 
and quality of human’s decisions.  

3) A new arbitrating mechanism will be developed to (i) 
fuse human and machine intelligence to transfer control 
commands from task-level to configuration-level and 
then to motor-level; (ii) determining whether or not the 
human should take main control authority rather than 
machine intelligence.       

VI. SUMMARY AND FUTURE WORKS  

Recent development of UAVs has been surveyed and the 
focus has been put on the technologies of human-machine 
interfaces (HMIs) to assure safe UAV operations. It has been 
found that despite of the rapidly development of sensing, 
information technologies (ITs), Artificial Intelligence (AI), 
and machine learning (ML), there is an emerging need to 
advance HMIs in reducing an average accident ratio in 
operating UAVs since most of existing HMIs lack the 
mechanisms to (i) fuse human and machine’s intelligence and 
(ii) deal with humans’ errors appropriately. A new 
development platform is proposed to acquire abundant brain 
singles from multi-sources, and a set of ML algorithms will 
be developed to identify human’s intentions and quantify 
human’s affections in making decisions on machine controls; 
more importantly, an arbitrating mechanism will be 
developed to fuse human’s and machine intelligence 
appropriately based on the quantified human’s affections, and 
the arbitrating mechanism will also be able to transfer high-
level control commands at low frequency to these commands 
at low-leave at high frequency for real-time performance. The 
proposed platform will be capable of tackling with human’s 
mistakes or poor-quality decisions by human when the subject 
is not at good conditions for SAs or decision-making.  

The proposed platform is at its preliminary development 
stage that demands further research effort at multiple aspects: 
firstly, more advanced instruments will be introduced and 
evaluated to ensure sufficiency and appropriateness of brain 
signals for classification and extraction of control intentions 
and evaluation of human’s emotions; secondly, ML algorithms 
will be advanced to identify human’s intentions accurately, 
reliably, and promptly and quantify human’s affections 
comprehensively. Thirdly, the arbitrating mechanism will be 
advanced to alleviate adverse effects of human’s mistake or 
low decision-making performance. Fourthly, the case studies 
for a number of UAV missions will be designed and tested to 
verify and validate the proposed development platform in real-
world applications.       
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