
  

  

Abstract— Just as optimal control addresses the inexact 
science of selecting controller gains, optimal system 
identification balances the effects of linearization, estimation 
and order reduction, to obtain the “best fit” approximation of a 
target electrical, mechanical, or electro-mechanical system. Like 
any engineering design problem, it involves matching a set of 
free design parameters to a requirement specification that 
defines what “best” means. In this paper, closed-form metrics of 
a normalized second-order system are used to develop a clear 
and simple design process to identify a 2nd order approximation 
that exhibits the most relevant dynamic characteristics of the 
target system. The process identifies the optimal parameters of 
an under or over-damped system from its step-response, and 
refines the approximation using its impulse-response. The 
approach is formulaic, non-iterative, and may be used to fit a 
second-order approximation to a higher-order system response, 
without the need for a complex search algorithm. 

I. INTRODUCTION 

Any practical controller design project begins with system 
identification of each component, or sub-system. When a sub-
system is outsourced, full information is unavailable so an 
approximation is needed. A 2nd order approximation with the 
dominant dynamics and DC gain is often sufficient since non-
linearities which are present but cannot be included in an LTI 
model, are often more significant than the deviation from a 2nd 
order approximation. When detailed model information is 
available, a 2nd order approximation may still be preferable to 
simplify the controller design process.  

Closed form equations to identify the dynamic behavior of 
under-damped 2nd order systems are well known (see for 
example [1, 2]) and have recently been extended to include 
over-damped systems [3] using their inflection point. These 
are useful when the target system is 2nd order, but do not 
adequately address deviations such as higher-order systems or 
non-linearities. Iterative methods have been developed to 
reduce the order of higher-order systems (see the review in 
[4]), but they are difficult to implement and are often beyond 
the scope of a novice engineer or the time budget of an 
engineer developing a controller for a non-critical application.   

Here, a redundant set of closed form equations that each 
consider a different aspect of an under-damped or over-
damped system from its step or impulse response, are 
combined to provide an approximation that targets the metrics 
of greatest importance. The process may be used to identify a 
black-box system from its step response which is easily 
obtained in the lab or available in a data-sheet, or to reduce the 
order of a white-box system whose impulse response may be 
mathematically generated. 
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The paper is organized as follows. Section II identifies an 
under-damped step-response with redundant equations and 
applies a weighted sum to arrive at an optimal estimation with 
respect to a practical requirement specification. It then 
identifies an over-damped step-response and indicates when a 
1st order approximation is preferable. Section III repeats the 
process for an impulse-response. Section IV shows a practical 
example of each system identification scenario. Section V 
provides concluding remarks.  

II. STEP RESPONSE IDENTIFICATION 

A. Under-damped Systems 

In [1], equations (1-2) are developed for Peak time (Tp) and 
Settle time (Ts) as a function of damping coefficient (ζ) and 
natural frequency (ωn). Substituting Tp into the time domain 
representation of the step response of a generalized 2nd order 
system produces the closed-form relationship between ζ and 
Percentage Overshoot (%OS) shown in (3). 
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As claimed in [1], “A precise analytical relationship 
between rise time and damping ratio, ζ, cannot be found”, but 
it is shown here that a precise analytical relationship between 
Rise Time (Tr),  ζ and ωn can be found. The inverse Laplace 
Transform of the step response of the generalized 2nd order 
equation (4) is shown in (5). 

  

 1 𝑒 sin 𝛽𝜔 𝑡 tan 𝛽
𝜁  

Tr is the minimum time when the negative term in (5) 
equals 0, which is either when the exponential or the sine 
function equal 0. The exponential is 0 when t = ∞ (a trivial 
result), so Tr is the shortest time that sin(arg)=0, which occurs 
any time arg is an integer multiple of  (arg=n). Setting n=0 
results in a negative Tr. Setting n=1 produces the solution to Tr 
shown in (6-7). 
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  Since (1-2) and (7) each relate a different time metric to ζ 
and ωn, they can each be rearranged to solve for ωn as a 
function of ζ and the individual time metric (8-10). 
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This provides three redundant methods for identifying a 2nd 
order step response. ζ is first obtained (3) to provide the desired 
%OS, and then combined with a desired metric (Tr, Tp, Ts) to 
generate the corresponding ωn (8-10). The resulting model has 
the exact Tr or Tp when (8-9) are used, or the approximate Ts 
when (10) is used since the phase of the sine term is ignored in 
the derivation of (2). For example, Fig. 1 contains three curves 
generated using a common ζ with 20% Overshoot, and a 
common DC Gain of 100. 

 Green: ωnr computed from (8) with Tr=2.1 

 Red: ωnp computed from (9) with Tp=2.7 

 Blue: ωns computed from (10) with Ts=4.9 

Figure 1.  Derived 2nd Order Step Responses. 

Natural frequency ωn becomes a free design parameter to 
generate the 2nd order approximation that best satisfies a 
requirement specification. When the target system is a 2nd 
order system, all three curves are equivalent and equal to the 
target. A 6th order target step response is shown (black curve) 
in Fig. 2 with three approximations, each corresponding to one 
of (8-10). The target curve has the same Tr as the green curve, 
the same Tp as the red curve, the same Tp as the blue curve, 
and 20% OS, just like all three approximations. 

Figure 2.  2nd Order Approximations of Black-Box Step Response. 

The choice of approximation is based on the relative 
importance of the individual metrics, or a compromise can be 
developed. Since each curve is generated from single design 
parameter ωn, a weighted sum can be used. In Fig. 3, the target 
step-response and various approximations using mean values 
are shown. Of course, mean values correspond to equal 
weighting coefficients but any weighting coefficients could be 
chosen. 

Figure 3.  2nd Order Approximations from Weighted Sums. 

B. Over-damped Systems 

For an over-damped step response, neither Tr nor Tp exist 
since the system never reaches final value. Instead, modified 
rise time Tr1, the time to rise from 10% to 90% of final value, 
is used. Although a closed-form relationship between ζ, ωn, 
and Tr1 is not known, it is shown in [1] that the linear 
relationship shown in Fig. 4 exists between ζ and ωnTr1, which 
can be estimated by (11). 
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Figure 4.  Modified Rise Time of Over-Damped Step Response. 

 𝜔 𝑇 4.44𝜉 1.15 

 Since a 2nd order system has two parameters (ζ and ωn), an 
additional metric is needed to complete the approximation. 
Although Ts is easily obtainable, equation (2) is not reliable 
since the poles of an overdamped 2nd order system do not share 
a common real component.  Instead, the time constant , the 
time required to reach 63% of final value, which is also 
available by inspection, is used for this purpose. This metric 
() does not appear explicitly in the definition of a 2nd order 
system with two real poles (12), but is shown in (13) to be the 
average of the two individual time constants which may be 
represented in terms of ωn using a linear approximation (14) 
taken from Fig. 5. In Fig. 5, the point cloud from computing  
and 1+2 for a wide range of ζ and ωn values shows a close 
linear correspondence between them.   
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Figure 5.  Linear Approximation of 2nd Order Time Constant. 

 Substituting (13) into (11) provides an estimate of ζ that is 
independent of ωn and only relies on Tr1 and  that are read 

directly from the step-response. With ζ known, (13) is used to 
solve for ωn (16).    

 𝜁
3.86 1.83 

 

 𝜔 2.1𝜁
𝜏 

Although (15) is singular when Tr1/=2.11 (ζ=∞), the 
inverse Laplace transform of the step response of a 1st order 
system (17) has the ratio Tr1/=2.2. Also, the characteristic 
equation of a 2nd order system is used to show the high 
frequency pole p2 is non-dominant (p2≥10p1) when ζ>1.74 (18) 
so (15) is not needed when Tr1/<2 (see Table I) since a 1st 
order approximation is preferred.  

 𝑇𝑟1

𝜏
ln 10 ln 90 2.2 

 𝜁 2 𝑝1𝑝2 2𝑝1 10
1.74 

TABLE I.  PREFERRED APPROXIMATION 

Metric Ratio Zeta Dominant Poles 
Order of 

Approximation 

Tr1/ < 2 1 < ζ < 1.8 2 2nd 

2 < Tr1/ < 2.1 1.8 < ζ < 2.7 1 1st preferred 

2.1 < Tr1/ 2.7 < ζ 1 pole only 1st 

 

Fig. 6 experimentally shows the relationship between Tr1/ 
and ζ for a 2nd order system where green indicates a 2nd order 
approximation, red indicates a 1st order approximation, and 
yellow may be either (1st order approximation preferred). Note 
that Tr1/ → 2.2 as ζ → ∞, as predicted by (17). 

Figure 6.  Time ratios vs Zeta. 

Four over-damped step responses are approximated in Fig. 
7. The one with a borderline non-dominant pole (ζ=1.8) uses a 
1st order approximation (19), while the others use 2nd order 
approximations (15-16). The target curves are in black, the 
estimates are in red, and the correspondence of all four is 
excellent. 
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Figure 7.  Approximate 1st & 2nd Order Step Responses. 

III. IMPULSE RESPONSE IDENTIFICATION 

The impulse response of a 3rd order system with one pole 
at zero may be approximated using the same technique by 
simply treating it like a step response of a 2nd order system 
without a pole at zero (20). 

 1  

Almost the same is true for the impulse-response of a 2nd 
order system which contains all the same dynamic information 
as the step response, but has additional information that can be 
used to refine the approximation. The dynamics of a step 
response can be observed by raising a system to an initial 
condition and releasing it, which is essentially an impulse 
response. The time metrics Tr, Tp and Ts are all available by 
inspection, and so is a fourth time metric Tic, the time required 
to raise the system to the initial condition, as shown in Fig. 8. 
Note that this argument does not hold for higher-order 
systems, since internal states may also have energy stored at 
Tic so the “Inverted Step-Response” is not necessarily 
equivalent to the step-response when starting from rest.    

Figure 8.  Under-Damped 2nd Order Impulse Response Metrics. 

When the impulse response of an under-damped system is 
available, Tr, Tp and Ts are available by inspection by simply 
measuring them relative to Tic, with %OS derived from 
Percent Undershoot %US (21). 

 %𝑂𝑆 %𝑈𝑆  

 

To obtain Tic, the impulse response of the generalized 2nd 
order equation (22) is transformed into the time domain (23) 
and Tic is the minimum time t that sets the argument of the sine 
function in (23) equal to zero (24), providing a fourth 
redundant equation for ωn. Unlike a step response, DC gain Kdc 
is not available by inspection, but substituting t=Tic into the 
impulse response (25) and equating it to IC, results in an 
equation for Kdc (26) from known values. 
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In summary, a 2nd order under-damped impulse-response 
may be approximated using (3, 21) to compute ζ, then using 
(8-10, 24) to compute four redundant versions of ωn which 
may either be selected individually or integrated in a weighted 
sum to arrive at an optimal ωn, which is then combined with ζ 
and IC (26) to compute Kdc. For example, Fig. 9 shows two 2nd 
order approximations, the red one uses ωnp (9) to give an 
identical peak time Tp, while the black uses (24) to give an 
identical initial condition time Tic. Note that the same system 
was used to generate the target curves in Fig. 2 and Fig. 9 but 
%OS in Fig. 2 does not equal %OS in Fig. 9 due to the higher-
order (6th order in this example) target system so the particular 
%OS used to compute ζ is another free design parameter    

Figure 9.   Over-Damped 2nd Order Impulse Response Metrics. 

A similar argument holds for over-damped systems. An 
over-damped impulse-response may be approximated using 
(15) to compute ζ, (16) to compute ωn, and (26) to compute Kdc 
using the metrics shown in Fig. 10. Similarly, Tic (24) may be 
used to more accurately estimate ωn, since Tic is exact, whereas 
(16) is derived from a linear approximation. 

For over-damped systems, ζ>1 so β is imaginary. 
However, since the inverse tangent (tan-1) of an imaginary 
number is also imaginary, both the numerator and denominator 
of (24) are imaginary and the result is both real and reliable. 
Critically-damped systems (ζ=1) must be handled specially 
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since (24) is singular and it may be necessary to artificially 
constrain ζ>=1 to prevent overshoot in the 2nd order 
approximation. The derivative of a critically-damped 2nd order 
system (27) is set to zero to compute Tic (28), which is 
substituted into the time-domain response (29) to compute ωnic 
(30) from values that are available by inspection of the step 
(Kdc) and impulse (IC) responses.  
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Figure 10.   Over-Damped 2nd Order Impulse Response Metrics. 

 

IV. EXAMPLE 2ND ORDER APPROXIMATIONS 

When the target system is Black-Box, the approximation is 
made using the step response only. When the target system is 
White-Box, an initial approximation is made using the step 
response, and refined using the impulse response.   

A. Black-Box Example 

An electro-mechanical system (Gsys) system and sensor 
(Hsen) are supplied by a hypothetical company, “ACME Inc.” 
who provides an experimental step response in each data sheet. 
The system Gsys has the under-damped step-response shown in 
Fig. 2, from which the metrics (31) are obtained. Physical units 
are not relevant for the sake of this example. 

 𝑇 2.1 𝑇 2.7 𝑇 4.9 %𝑂𝑆 17 𝐾𝑑𝑐 100 

Equations (3, 8-10) are used to solve for the metrics (32). 

 𝜁 0.5 𝜔 1.1 𝜔 1.3 𝜔 1.7 

 The requirements, constraints and goals (RCGs) specify that 
rise time is three times as important as settle time, and peak 
time is relatively inconsequential. A weighted sum (33) is used 
to optimize ωn and the associated 2nd order approximation GO2 
(34) using ζ, ωn and Kdc (31-32). The step response is shown 
in Fig. 11 where Tr′ and Ts′ are the rise and settle times of GO2. 

 𝜔 3𝜔 𝜔
4 1.25 

 𝐺
158

𝑠2 1.22𝑠 1.58
 

Figure 11.  EM Step Response Approximation. 

The sensor has the over-damped step-response shown in 
Fig. 12 with the metrics indicated. 

Figure 12.  Amplier Step Response. 

Equations (15-16) are used to produce the approximations 
(ζ, ωn) shown in Fig. 13, and to re-compute ωn1 with ζ=1, to 
satisfy the RCGs. Of course, ζ could have been constrained by 
a value other than 1 (e.g. ζ>=0.95) to satisfy a different 
overshoot constraint. Note that although (15) is designed for 
an apparently over-damped system, it returns ζ<1 if an under-
damped approximation better satisfies the criteria. 

Figure 13.  Amplier Step Response Approximations. 

B. White-Box Example 

ACME Inc. is internally developing a control system that 
incorporates its own system and sensor. For Gsys, the initial 
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approximation from Fig 11 is first computed. Full information 
is available so impulse responses are produced, and used to 
refine the approximation using the average %OS from the step 
and impulse responses (35), using (3) to re-compute ζ, (24) to 
compute ωnic, using the weighted sum (36) to place emphasis 
on Tic, and with Kdc taken from the step response. The initial 
(dotted red) and refined (solid red) impulse & step-responses 
are shown in Fig. 14. 

 %𝑂𝑆 20 𝜁 0.45 𝜔 0.77 𝜔 2.1 

 𝜔 3𝜔 𝜔
4 1.1 

Figure 14.  Tuned EM Response. 

For Gsys, the initial approximation (ζ=1) from Fig 13 is first 
computed. Impulse responses are produced, and Tic is used to 
compute ωnic (28) which is averaged with ωn1 to refine ωn. The 
initial (dotted red) and refined (solid red) impulse & step-
responses are shown in Fig. 15. 

 𝑇 0.77 𝜔 0.34 

 𝜔 𝜔 3𝜔
4 1.7 



Figure 15.  Tuned EM Response. 

V. CONCLUSION 

Developing a 2nd order approximation of a higher-order 
system is a subjective activity with an infinite number of 
solutions. The best solution provides an optimal compromise 
between metrics with different levels of importance, as 
determined by the application. 

Here, closed-form equations are developed to extract all 
available 2nd order information from an over, under, or 
critically-damped impulse or step response. Redundant 
equations are combined in weighted sums to optimize the 
relative importance of reproducing different characteristics of 
the target response, resulting in a toolbox of equations that 
allows a design engineer to tune the approximation to meet a 
particular design specification without having to resort to any 
numeric or iterative computations. 
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