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Abstract— Robotic painting, particularly in industrial and
construction domains, has attracted considerable attention due
to its precision and uniformity. However, current systems
are constrained by inadequate precision and effectiveness in
painting, particularly when applied to large-scale surfaces. This
study introduces an advanced adaptive robotic painting system
that incorporates a mobile manipulator (MM) designed to
enhance both accuracy and efficiency in indoor surface painting
through two innovative sub-modules: automated trajectory
generation and MM adaptive control policy (ACP). Initially, to
autonomously generate the accurate trajectory, we propose the
Attention-aware Graph Network (AGN) for refining 3D surface
model to significantly enhance the accuracy and efficiency of
environment modeling. Following this, the RayCast 3D Mapping
technique is introduced for precise projection of 2D images onto
arbitrary 3D surfaces with its flexibility and adaptability. Fur-
thermore, we introduce an MM ACP comprising a trajectory
controller and a close-loop whole-body controller. This dual-
controller system enables the MM to swiftly move to target
poses and smoothly follow trajectories, with the capability to
autonomously switch between control paradigms based on task
requirements. In addition, Experimental results demonstrate
that the proposed automated trajectory generation strategy,
coupled with the MM ACP, significantly improves the accuracy
of environmental perception and the efficiency of trajectory
generation. Furthermore, the MM exhibits robust performance
in both simulated and real-world settings, successfully executing
fully autonomous painting tasks.

I. INTRODUCTION

Mobile manipulators (MMs), integrating the dexterity of
robotic arms with the flexbility of mobile platforms, exhibit
a versatility compared to stationary robots. The additional
degrees of freedom (DOFs) provided by the mobile platform
enable these high-redundancy manipulators to perform a
wider variety of tasks, offering numerous solutions in their
application areas [1], [2]. Contrary to applications centered
around pick-and-place tasks [3], which focus primarily on
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Fig. 1. Robotic painting system is applied on the large-scale wall painting
tasks with the predefined pattern.

tasks such as painting, welding, and drawing [4], [5], require
the MM to have the additional capability to generate contin-
uous operating trajectories that align with the environment
or target objects, as well as the precise tracking of these
paths. Consequently, the ability of MMs to seamlessly switch
between operational modes is essential for tasks like large-
scale wall painting, as illustrated in Fig.1.

The field of robotic painting has attracted considerable
attention in the industrial and construction field due to its
exceptional precision and uniformity. Regarding large-scale
painting applications, painting robots can be classified into
three principal categories: Track-Mounted Robots [6], [7],
Multi-Arm Robots [8], and Mobile Manipulators [1], [4], [9].
The first two categories represent traditional painting robot
solutions, primarily expanding operational reach through the
construction of tracks or leveraging multiple robotic arms for
extended range. However, such methods are limited by space
requirements and coordination complexity. In recent years,
the adoption of MMs for painting tasks has increasingly
popular, combining the mobility of autonomous robots with
the accuracy of articulating arms. Nevertheless, current MMs
follow a “park-operate-park” mode, executing segmented,
phased trajectory planning based on surface slicing technol-
ogy to accomplish extensive range painting, facing accuracy
challenges at segmented task transitions. [4]. Consequently,
the primary challenge for current MMs lies in enhancing the
precision of both trajectory generation and overall trajectory
tracking. To address this, we propose an MM designed to
operate while in motion, outfitted with two sub-modules:
automated trajectory generation and MM adaptive control
policy (ACP), aimed at augmenting the accuracy of indoor
surface painting.

Firstly, the automated generation of painting trajectories
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relies on the integration of precise 3D surface modeling
and advanced image mapping techniques. Traditionally, 3D
models creation for large-scale painting has relied on manual,
standalone 3D scanners, requiring further calibration for
robot manipulation, thereby complicating the overall process
[9], [10]. To acquire real-time surface data, an advanced
technique involves the integration of RGB-D cameras with
MMs. However, the precision of 3D surface data captured
by these compact cameras [11], is often suboptimal, sig-
nificantly impacting the accuracy of trajectories generated
for subsequent operations. Thus, the refinement of this data
is crucial for improving the accuracy of surface model.
Traditional refinement methods, such as super-voxel struc-
tures, require a significant time and are not suitable for real-
time applications [12], [13]. In contrast, deep-learning-based
methods especially end-to-end networks provide enhanced
effectiveness but may not completely resolve irregularities in
point clouds, which can affect the quality of refinement [14],
[15]. Addressing this limitation, we propose the development
of an Attention-aware Graph Network (AGN) designed for
selective feature extraction and refinement in point clouds,
focusing on noise correction, thereby substantially enhancing
the accuracy of 3D surface reconstructions for large-scale
painting applications. Alongside 3D modeling challenges,
the precise projection of 2D images onto 3D surfaces for
indoor robotic painting requires meticulous mapping tech-
niques [16]. Traditional approaches such as least squares
conformal mapping, aiming to preserve geometric accuracy
through mesh reconstruction, often lead to inconsistencies
in mapping because of the surface parameterization and
subsequent mapping procedure [17]. In contrast, the process
of mapping the 3D surface onto a 2D plane, overlaying the
2D picture onto it, and subsequently remapping it back to 3D
to produce the trajectory of the painting involves the handling
of additional 3D data and poses difficulties when dealing
with surfaces that have irregular shapes [5]. To mitigate
these issues, we introduce the RayCast 3D Mapping method,
which employs ray casting principles [18] to optimize the
mapping procedure by focusedly interacting with point cloud
data relevant to predetermined patterns. This technique not
only streamlines data processing but also accommodates
various image resolutions and complex surface geometries,
enhancing its applicability across diverse robotic painting
scenarios.

Secondly, the effectiveness of MMs in large-scale auto-
mated painting depends on their ability to execute paths
with precision. In the conventional manner, MMs operate
with segregated control systems for the mobile base and
the manipulator arm [19], leading to challenges, including
the occurrence of discontinuities or overlaps in painted
areas. Specifically, whole-body control MMs typically con-
centrate on pick-and-place tasks, facilitating path planning
and ensuring the maintenance of movement speed [20]–
[22]. However, at low-speed trajectory tracking, the base
odometry’s sensitivity to minor movements is insufficient,
potentially leading to inaccuracies in odometry and, by
extension, overall trajectory tracking. Addressing this chal-

lenge necessitates the MM’s ability to adaptively switch
between different control modes based on the task, with a
particular emphasis on compensating odometry in whole-
body control during trajectory tracking. To this end, we
propose an adaptive control strategy that enable smoothly
switching between control modes and incorporating close-
loop control for enhanced odometry compensation. This
approach significantly improves the MM’s ability to reach
target poses and follow trajectories with high precision.

Finally, we have designed a MM comprising a robot
manipulator and a four-wheel drive mobile robot, equipped
with target sensing, trajectory generation, and adaptive con-
trol mechanisms to achieve the autonomous indoor painting.
Moreover, comprehensive experimentation with a custom
MM highlights the precision and autonomy of our system in
executing painting tasks. The evaluation framework incorpo-
rates simulations to evaluate the adaptability of the system
over various wall types, as well as empirical testing in real-
life settings using the custom MM. This work contributes in
three significant ways:

• We propose an Attention-aware Graph Network (AGN)
for 3D surface modeling to refine the captured 3D
surface, ensuring the accuracy of the painting trajectory.
The RayCast 3D Mapping technique is proposed to
improve the efficiency of trajectory generation, address-
ing the challenges of irregular surfaces and enhancing
overall system performance in complex environments.

• We developed an adaptive control policy that integrates
a trajectory controller and a closed-loop whole-body
controller to maintain precise operations during low-
speed following tasks. This dual-controller setup allows
the robot to quickly achieve target poses and ensures
accurate, smooth trajectory tracking.

• We evaluate our MM on indoor painting tasks across
both simulated and physical environments. The results
indicate that the MM effectively produces dynamic
end-effector painting trajectories and demonstrates high
accuracy and smoothness in trajectory tracking. This
comprehensive assessment validates the efficiency of
the technology and highlights its potential for realistic
painting applications or comparable real-world scenar-
ios.

II. SYSTEM OVERVIEW

As depicted in Fig. 2, we present a comprehensive
overview of our robotic painting system, detailing the process
of rendering a painting on an arbitrary surface, utilizing a
customized MM that encompasses both a robotic manipulator
and a mobile platform. This system is particularly optimized
for large-scale indoor painting applications, necessitating the
accurate modeling of the painting surface, the generation of
a 3D painting trajectory, and the smooth execution of the
painting task.

Given that the indoor painting area typically exceeds the
robot’s range, our approach involves deploying the robot
across multiple waypoints to conduct comprehensive area



Fig. 2. Flowchart of task sensing and adaptive control for mobile
manipulation in indoor painting application.

Fig. 3. Mobile manipulator and the components.

scanning and localization through an onboard RGB-D cam-
era. These strategically determined waypoints, represented as
C ⊂ R6, are optimized to minimize the number of captures
required while ensuring complete coverage of the operating
area. The trajectory controller is activated via ACP to guide
the robot to achieve the target waypoints C. At each waypoint
Ci, the system acquires target surface data Si ⊂R3×n in point
cloud format and aligns them to S. However, due to the
inherent limitations of RGB-D sensors, the initial quality of
S may not meet the exacting standards required for painting.
Therefore, a refinement process transforms S to S′ to meet
the requirements of the painting task.

Following this preparatory phase, a 3D painting trajectory
is formulated for the designated images, represented as
P ⊂ R2. To map this 2D image onto a 3D surface of
arbitrary orientation and size, we introduce the RayCast
3D Mapping methodology. This method projects the P
onto the 3D surface, thereby deriving the painting trajectory
T ⊂R6. The orientations of each Ti are estimated according
to the normal vector for each point in S′, which is essential
for determining the orientation of the end-effector. Upon
computing the 3D trajectory for painting, it autonomously
switches to whole-body control through ACP to follow this
trajectory. The collaborative interaction between 3D painting
trajectory generation—incorporating both 3D surface model-
ing and RayCast mapping—and the adaptive control policy,
alternating between trajectory and whole-body controllers,
guarantees the accuracy and efficiency of automated indoor
painting. The structure of custom MM is illustrated in Fig. 3.

Fig. 4. Struction of the Attention-aware Graph Network.

III. 3D PAINTING TRAJECTORY GENERATION

3D Painting Trajectory Generation is essential in the
execution of indoor painting tasks. It contains both the
processes of 3D surface modeling and the mapping from 2D
images to 3D surfaces. Instead of using separate systems
for surface capture, our technique incorporates this func-
tionality directly into the robotic system. This integration
significantly enhances operational efficiency and flexibility
while simultaneously mitigating errors associated with the
calibration between distinct systems. Furthermore, the ray
casting technique is adopted to align the 2D image on the
3D surface to generate the operating trajectory, guaranteeing
accurate alignment and orientation, which is crucial for
carrying out the painting process.

A. 3D Surface Refinement

The point cloud obtained from the RGB-D camera con-
sistently fails to meet the criteria for painting. The tech-
nique of refining 3D surfaces model S to refined surface
S′ is crucial for motion planning in robotic painting. The
utilization of Graph Neural Networks (GNNs) presents a
highly efficient method of processing irregular and unordered
structures, such as point clouds. Moreover, the incorporation
of attention-aware neural networks in point cloud refinement
enables models to choose focus computational resources on
different regions of the input data. Through the utilization
of the attention mechanism, the model effectively evaluates
the importance of different points, guiding attention towards
regions that need to be corrected.

In this study, we introduce an innovative framework, the
Attention-aware Graph Network (AGN) as depicted in Fig. 4,
specifically designed for the extraction of 3D shape features
from point clouds. The AGN methodology emphasizes a
dual-focus approach, incorporating both self-attention mech-
anisms and adjacent information. This is accomplished by
utilizing a graph attention mechanism, which allows each
local feature vector to explore various locations, thereby
facilitating the identification and integration of connections
between local and global features.

Our method focuses on strategically utilizing the inherent
geometric features seen in point clouds. To accomplish this,
we have developed the Hierarchical Feature Extractor (HFE)
which includes 3 Graph Descriptors (GDs). The GD lever-
ages an attention-based methodology to effectively aggregate
local graphs, thus enhancing the feature extraction process.
The AGN processes the graph representation of the input



Fig. 5. Illustration of rayCast 3D mapping technique for projecting a 2D
image onto varied surface geometries.

point cloud, enabling the extraction of both global and local
point cloud features. Integrating an attention mechanism, the
AGN effectively identifies and emphasizes key noise area
within the point cloud. The network approximates the phys-
ical residuals in the input point cloud, which may arise from
the principles of RGB-D depth image acquisition, inherent
structural errors in the camera, or random errors encountered
during the data collection process. These residuals are then
compensated in the original point cloud, resulting in a refined
point cloud with enhanced accuracy, thereby achieving the
objective of refining the target surface.

During the training phase of our model, we utilized two
metrics to ensure the precision and quality of the generated
point clouds: the Chamfer Distance with L2 norm and the
Laplacian Smoothness Loss. The Chamfer Distance with L2
norm can be defined as:

LCD2(P,Q) = 1
|P| ∑

x∈P
min
y∈Q
∥x− y∥2

2 +
1
|Q| ∑

x∈Q
min
y∈P
∥y− x∥2

2 , (1)

where ∥∥2
2 represents the squared L2 norm, accentuating

the Euclidean distance between point pairs. The Laplacian
Smoothness Loss is adopted to evaluate and improve the
smoothness of the point cloud, which is given by:

Lsmooth =
N

∑
i=1

∥∥∥∥∥pi−
1
K

K

∑
k=1

pik

∥∥∥∥∥
2

. (2)

Consequently, the aggregated loss function is expressed as:
L = LCD2(P,Q)+Lsmooth. (3)

B. RayCast 3D Mapping

We propose a more direct and flexible approach: the
RayCast 3D Mapping method, grounded in the principles of
ray casting. This method as shown in Fig. 5 initializes ray
origins aligned with the normal of the image plane. It then
calculates the mapping of the 2D image P onto the surface
S′ by aligning these rays with the normal vector of each point
on the S′. The projected points T are systematically arranged
to form a trajectory that encompasses all points, optimized
through a sorting algorithm to minimize the overall trajectory
length.

For the execution of these points, we employ a distance
sorting algorithm to further reduce the trajectory length. The
2D image is segmented according to conventional draw-
ing and writing patterns, extracting a series of segments.

These segments are then sequentially integrated into the path
generation process, thereby endowing the robotic painting
operation with a human-like execution quality. A critical
component of the RayCast 3D Mapping algorithm is the ray
casting process itself, defined as:

Ti = RayO+ t ·RayV, (4)
where t represents the parameter that allows for the intersec-

tion of the ray with the plane. Each individual ray vector is
methodically analyzed in order to identify the nearest point
inside the point cloud. This involves the calculation of the
interaction point between each ray and the point cloud. A
crucial element of our methodology involves the systematic
assessment of locations where two or more components in-
tersect. The prioritization method places emphasis on points
that are in close proximity to the origin of the ray, while
discarding locations based on specific criteria such as pixel
intensity and spatial positioning in reference to the map
frame.

IV. MM ADAPTIVE CONTROL POLICY

For autonomous indoor operations with MMs, there typ-
ically exist two primary motion modes: pose achievement
and trajectory following [23], [24]. Pose achievement, fo-
cusing on precise location and orientation, typically employs
separate controls for the mobile base and the robot arm,
facilitating efficient navigation and precise positioning in
constrained environments. Trajectory following, however,
requires a comprehensive control system for smooth, co-
ordinated movements essential for dynamic activities like
real-time tracking or manipulation. Within indoor painting
applications, these modes are crucial for complex operations
including autonomous target modeling, trajectory generation,
and subsequent trajectory tracking. To seamlessly integrate
these capabilities, an ACP combined with a trajectory con-
troller and a closed-loop whole-body controller has been
developed, enabling MMs to autonomously switch between
motion modes based on specific painting task demands,
thereby significantly enhancing operational adaptability and
intelligence for fully automated tasks.

For a given series of operational waypoints, represented as
a sequence of poses (position and orientation), we employed
K-means clustering to uncover underlying patterns. Given
a set of N poses, K-means aims to partition the data into
K clusters by minimizing the within-cluster variance. The
objective function of K-means clustering is formulated as
follows:

argmin
C

K

∑
k=1

N

∑
i=1
∥xi−µk∥2, (5)

where C denotes the cluster assignment matrix, Cik = 1 if
pose i belongs to cluster K , and µk represents the centroid of
K . The algorithm iteratively optimizes cluster assignments
and updates centroids until convergence.

Subsequently, Principal Component Analysis (PCA) was
conducted on each cluster to quantify variance differences.
The variance ratio difference for each cluster calculated to



Fig. 6. Schematic of the trajectory control architecture for the mobile
manipulator.

measure dispersion across the principal components was
computed as:

Vdi f fi = std(PC1i ,PC2i ...,PCni), (6)
where PCni represents the variance ratio of the nth principal

component of the ith cluster, and i ranges from 1 to K.
The average variance difference across all clusters was
determined by:

Vdi f f avg =
1
k ∑

K
i=1 Vdi f fi , (7)

highlighting the uniformity of distribution within clusters.
For independent poses, their variance differences remained
within a specific range, while poses belonging to a path
exhibited either very small or significantly large variance
differences. These differences indicate paths with minimal
directional change or those with substantial rotational move-
ments, respectively. Based on empirical observations, we
set upper bounds (0.8) and lower bounds (0.3) for mode
differentiation.

A. Trajectory Controller

In the proposed trajectory controller for a mobile manipu-
lator, the system decomposes a designated path into discrete
commands for both the mobile base and the robot arm.
This decouples the 9-DOF path into separate 6-DOF for
the arm and 3-DOF for the base, with subsequent trajectory
calculations performed by modules like MoveIt for the arm
and Nav2 for the base. These are harmoniously integrated
by the command adapter, which ensures seamless motion
coordination (Fig. 6).

The command adapter focuses on unifying these dis-
parate trajectories generated by MoveIt and Nav2 into
a unified trajectory by standardizing time parameters
and ensuring kinematic consistency across state vectors
(s(t) = [p(t) ,v(t) ,a(t)] where p(t), v(t), and a(t) represent
position, velocity, and acceleration vectors, respectively). By
harmonizing the time frames of each trajectory, it achieves
time coherence, which is a vital requirement for the smooth
integration of motion trajectories. The core of the method lies
in the interpolation of state vectors at standardized intervals,
ensuring that the produced trajectory satisfies with both
kinematic continuity and dynamic constraints.

For our mobile base employing a Four-Wheel Drive
mechanism, the Four-Wheel Steering Kinematics (4WSK)
is essential. The 4WSK allows for independent steering of
each wheel, which provides greater flexibility and agility in
navigation. It intricately converts the 3-DOF trajectory into
precise 8-DOF commands, deriving the rotational angle of

Fig. 7. Schematic of the whole-body control architecture for the mobile
manipulator.

each wheel θi and the steering angle ϕi relative to the x-axis
of the robot’s frame, ensuring precise motion control. Similar
to [25], define the velocity of the mobile base as:

vr =
[
vrx vry ωr

]T
, (8)

where vrx and vry represent the translational velocity in the
xr and yr directions, respectively. ωr represents the angular
velocity of the body platform relative to vertical zr-axis.
The relationship between the angular velocity of individual
wheels (θ̇i, ϕ̇i) and the total velocity of the mobile base can
be established as:[

θ̇i
ϕ̇i

]
=

1
rl

[
lCϕi −lSϕi ailSϕi−bilCϕi
rSϕi rCϕi lr+brSϕi−arCϕi

]vrx
vry
ωr

,
(9)

where S and C symbolize sinusoidal and cosinusoidal func-
tions, respectively. r and l the wheel radius and steering link
length, respectively. (ai,bi) indicate the coordinates relative
to the body frame of the mobile base, where i ranges from
1 to 4. Thus upon function ( 9), the angular and steering
angles can be computed, so enabling their transformation
into instructions for controlling the speeds of 8 joints.

B. Closed-loop Whole-body Controller

When it comes to MM operations, it is essential to
use a whole-body control scheme to ensure the accurate
positioning of the end-effector. Our technique is centered
around the integration of Whole-Body Inverse Kinematics
(WBIK) and 4WSK, forming the foundation of our 14-
joint command strategy as depicted in Fig. 7. Our WBIK
methodology, which draws inspiration from the quadratic
programming (QP) framework proposed by [26], adeptly
addresses the inherent challenges of WBIK inherent to MMs
with a combined 9 DoF. The QP technique is established
as an optimization problem, calculating joint velocities with
precision to realize the desired end-effector velocity while
conforming to constraints that prevent joint limit violations
and enhance manipulability. However, this QP-WBIK strat-
egy encounters challenges during low-speed tasks, such as
painting, where the combination with 4WSK can result in
discontinuous base motion. To address this, we incorporate
dynamical constraints for the base’s movement, optimizing
the base’s actions in minimal motion scenarios by calibrating
the movement amplitude during trajectory tracking. The
optimization problem, therefore, involves these dynamics and



Fig. 8. Simulation screenshot in gazebo of the indoor painting setup. The
robot is equipped with a hand-mounted camera and LIDAR for navigation
and the 2D painting pattern is pre-provided.

c

is concisely formulated as:

min
q

1
2

qTM q+CTq (10)

subject to
Jq = bve, Aq≤ B, Q′min ≤ q≤Q′max (11)

where q is the vector of joint velocities for both the arm
and the base, Q is a positive semidefinite matrix defining the
cost associated with the velocities, C represents additional
costs such as manipulability. A and B define the inequality
constraints such as joint limits, and Q′min, Q′max are the
bounds on the joint velocities, where the lower bounds are
updated based on the desired movements in the x and y
directions, which are defined as:

Q′min[0,1] = [S (∆x),S (∆y)], (12)
where S (·) is the scaled oprator. ∆x and ∆y are the

differences in the x-coordinate and y-coordinate of the end-
effector position, respectively. In addition, the control logic
for low-speed MM movement incorporates a threshold-based
halting mechanism, expressed as:

if ∆xtotal ≥Θ then

{
halt base,
∆xtotal← 0

. (13)

In this design, ∆xtotal =
√

∆x2 +∆y2 aggregates the displace-
ment of mobile base, triggering a halt in base movement
upon reaching the predefined threshold Θ. This mecha-
nism’s activation depends on the complexity of the target
trajectory, privileging the manipulator’s involvement in fol-
lowing trajectory exhibiting significant local variance and
thus in turn reduces the frequency of base activations. By
implementing this closed-loop control technique, the MM
system consistently maintains precise operations, especially
when performing tasks that require low-speed following.
This enhances the overall accuracy and effectiveness of the
system in following to the desired trajectory.

V. EXPERIMENT AND RESULTS

To validate the tracking performance of the devised task
sensing and ACP for an autonomous MM in an indoor
painting application, a comprehensive suite of experimental
verifications has been conducted. These experiments were
performed using our custom-designed MM. Both simulation
and real-world trials demonstrated the effectiveness of the

Fig. 9. Closed-loop Whole-Body Controller-Based Trajectory Tracking
Experiment in Gazebo. The red curve is the generated path and the blue
one is the executed path in 3D space.

TABLE I
RMSE OF TRAJECTORY TRACKING ERROR IN SIMULATION

Error(m) X Y Z Total
RMSE 0.021 0.025 0.026 0.024

Fig. 10. Results of point cloud refinement base on AGN and PCN. The
scenerios including the corner, the flat wall, and the object infront of a flat
wall are illustrated.

fully automated indoor painting procedure. Furthermore, the
efficacy of the 3D surface refinement and RayCast 3D
Mapping techniques has been well illustrated.

A. Simulation

Fig. 8 presents a screenshot of a simplified indoor painting
scene within the Gazebo simulation environment. The scene
is configured with two walls forming a planar surface and a
corner. A MM is positioned nearby to execute the painting
task. This task adheres to the framework depicted in Fig. 2.

Fig. 9 and Table I illustrate the results of the robot’s
trajectory tracking. During this process, the robot employs
a closed-loop whole-body controller and interpolates the
predefined trajectory to ensure smoother motion. The Root
Mean Square Error (RMSE) values for the X, Y, and Z axes
are computed to assess the tracking accuracy. It is observed
that the robot proficiently follows the preset trajectory, with
an overall error margin of 0.024 meters.

B. Point cloud Refinement

The Attentional Graph Network (AGN) is employed to
refine input low-precision point clouds. The AGN-based
point cloud refinement capability was evaluated in indoor
scenarios. Implementation was carried out on a standard
workstation configured as follows:
• Memory: 64 GB



TABLE II
CHAMFER DISTANCE(CD) (1E-3) RESULTS OF SURFACE REFINEMENT

THROUGH AGN

Method L1 norm L2 norm
Noisy input 25.88 5.08

Refinement result 5.52 (78.7%) 1.12 (77.9%)

Fig. 11. Trajectories Generated in Varied Scenarios: Flat Wall, Corner, and
Cylinder. This figure presents both the side and top views of the trajectories,
illustrating the orientation of each point within the path.

• Processor: Intel® CoreTM i9-9900K CPU @ 3.6GHZ
• GPU: Quadro RTX 4000
• Operating System: Ubuntu 18.04
Three distinct scene types were captured using an on-

hand Realsense RGB-D camera: a flat wall, a corner, and
objects placed in front of a wall. Ground-truth point clouds
were captured using a Photoner 3D scanner mounted on the
robot. The transformation between these two frames was
provided in real-time by the robot system. The results of
the AGN-based point cloud refinement and the comparison
with PCN are presented in Fig. 10. It is evident that the
proposed method significantly enhances point cloud quality,
particularly in areas with distinct geometric features such
as edges and corners. Table II lists the differences and the
improvement percentages between the original point clouds
captured by the RGB-D camera and the refined point clouds
compared to the ground truth. We used the Chamfer Distance
with L1 and L2 norms as criteria, achieving improvements of
78.7% and 77.9%, respectively. This indicates that the accu-
racy of 3D surface models is greatly increased by the AGN-
based point cloud refinement method, thereby enhancing the
accuracy of the generated trajectory.

C. Raycast 3D mapping

In this study, we evaluated the efficacy of the Raycast
3D mapping method within a simulated environment. The
simulation involved setting up a canvas on various structures:
a flat wall, a corner, and a cylinder, using a basic painting
pattern: a curve.

Fig. 11 illustrates the trajectories generated in these three
distinct scenarios. The paths were devised based on the
specific location and size of each canvas. Our methodology
incorporated the use of a cosine metric to ascertain the
closest point in the point cloud to our projection line.
A critical aspect of this process involved calculating the
normal at each point to ensure perpendicularity to the wall
surface. This is a pivotal consideration for tasks such as

TABLE III
RMSE OF TRAJECTORY TRACKING ERROR IN REAL ROBOT

Error(m) X Y Z Total
RMSE 0.010 0.040 0.019 0.046

Fig. 12. Closed-loop Whole-Body Controller-Based Trajectory Tracking
Experiment in Real Scene. The red curve is predefined path and the blue
one is the executed path in 3D space.

painting or drawing, where it is imperative to maintain the
end effector’s perpendicular orientation to the surface for
precision and to prevent damage during contact tasks. These
results highlight how Raycast 3D mapping can improve the
accuracy and adaptability of robotic operations in complex
spatial configurations.

D. Application on Real Scene

We have successfully integrated and a surface refinement
and projection strategy into our custom-built MM. For our
experimental setup, we selected the flat wall as our test
area, onto which a water-compatible canvas was placed for
painting tasks. The initial operation involved acquiring a
surface model of the canvas. Utilizing the proposed 3D
surface refinement coupled with a RayCast 3D mapping
method, the robot is capable of automatedly generating an
end effector painting trajectory for real-time execution.

During the 3D surface model construction phase, the robot
calculates the capturing waypoints required for point cloud
acquisition. It employs a trajectory controller to navigate
directly to these poses. Once the painting trajectory is
acquired, the robot seamlessly converts to a whole-body
controller. This controller synchronizes the movements of
the robot’s arm and mobile base to ensure continuous and
efficient painting execution.

To accurately assess the real-world performance of the
custom MM’s ability to follow trajectories, we utilized a
motion capture system as the benchmark. The results are dis-
played in Fig. 12 and Table III. Throughout this process, the
robot arm and mobile base constantly compensate for each
other’s movements to achieve smoother motion. However, it
is noted that some tracking precision was compromised due
to the mobile base experiencing slight slippage during actual
movement. The Root Mean Square Error (RMSE) values for
the X, Y, and Z axes were calculated to evaluate the tracking
accuracy. Despite the challenges, the robot demonstrated
proficient adherence to the preset trajectory, with an overall
error margin of 0.046 meters. These results demonstrates
both adaptability and precision in real-world robotic painting
applications.



VI. CONCLUSION

Overall, this study represents a mobile manipulator com-
bining with advanced sensing and control technologies to
enhance the generation of 3D trajectory surface and adaptive
control in indoor applications. The 3D trajectory generation
strategy, which combines an Attention-aware Graph Net-
work (AGN) for 3D surface refinement and the RayCast
3D Mapping method, has shown considerable promise in
enhancing surface modeling and image mapping accuracy.
The adaptive control policy, incorporating both trajectory and
closed-loop whole-body controllers, further underscores the
mobile manipulator’s adeptness in efficiently navigating to
target poses and following complex trajectories. However,
challenges still persist in real-world environmental dynamics
and their impact on the robot’s interaction capabilities. Future
efforts will focus on real-time environmental adaptability
and the motion planning under uncertainty for the mobile
manipulator and then expanding its range of operations to
encompass more complex tasks.
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