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Abstract—This paper deals with the design of a new haptic
interface to drive a wheelchair locomotion simulator in real-time.
The proposed haptic interface considers a reference model of a
manual wheelchair (MWC) with a coupled straight line, turn and
slope/cross-slope dynamics. This model allows both to reproduce
the wheel-ground contact resistances in real-time and to estimate
the kinematic motion states of the wheelchair. Then the theoret-
ical concept of the model predictive control (MPC) scheme for
linear time-varying (LTV) systems is exploited for the design of
the haptic controller in order to handle the reference tracking
problem. This controller is based on an LTV model of the MWC
system coupled with the ergometer rollers of the simulator using
an online identification of its dynamics. This formulation allows
us to deal with nonlinearities and variations of the contact
friction between the MWC wheels and the simulator rollers.
The stability of the simulator haptic interface is demonstrated
using the Lyapunov stability tools. Finally, the performance and
effectiveness of the proposed haptic interface are evaluated by
experimental tests on the PSCHITT-PMR simulator platform
using standardized locomotion scenarios.

Index Terms—Wheelchair Simulator, haptic interface, real-
time applications, model predictive control (MPC), linear time-
varying (LTV) systems, people with motor disabilities.

I. INTRODUCTION

The manual wheelchair (MWC) is an essential tool for the
empowerment of people with reduced mobility. Thus, better
accessibility for wheelchair users promotes, a balanced and
better quality of life. However, wheelchair accessibility is still
not assured for many manual wheelchair users, due to inade-
quate urban infrastructure but also the physical capabilities of
the user [1]. Therefore, it is crucial to thoroughly investigate
the biomechanical efficiency of the MWC propulsion as a
function of the driving environmental conditions. In general,
to quantify the energy losses during wheelchair movement,
it is sufficient to evaluate the rolling and pivoting resistance
torques [2]. One of the main limits of this approach is that
it is based on a long and costly experimental process, and
that can be dangerous for the subjects. A more promising
solution for an experimental laboratory setup is a wheelchair
locomotion simulator [3]–[6]. It simulates the locomotion of a
manual (MWC), electric, and power-assisted wheelchair in a
virtual environment for various driving situations. In this way,
realistic accessibility conditions are created, opening up many
solutions to enable ergonomic wheelchair locomotion with the
aim of providing a reliable examination of the biomechanics
of wheelchair propulsion. Nevertheless, the design of haptic
interfaces to drive such systems is quite complex. Among

the current simulators, there are treadmills that can replicate
the straight-line movements of the MWC on flat or sloping
ground [3], [7], although the wheels of the wheelchair are
constrained to the same speed and direction, which limits
this type of simulator to reproduce the propulsion during
turning or slope maneuvers. Another common simulator is the
dyno-ergometer [8]–[10]. It allows a combination of straight
and turning movements on flat ground. However, the main
scientific limitation of these simulators is the ability to re-
produce in real-time the resistances applied to the wheels of
the real ground in the virtual environment for a combination
of a straight line, turn, or maneuvers on the ground with
slope/cross-slope depending on the user’s actions. In fact,
such systems require haptic interfaces that can drive the
simulator to realistically reproduce wheelchair displacement
in the virtual environment (VE). Several haptic interfaces for
MWC simulators are proposed in the literature, usually based
on a simple MWC model and a basic controller to simulate
friction between the wheels and the ground [6]. In [8] a haptic
interface prototype was developed to generate an interaction
between a virtual environment and the dynamics of the wheels
allowing the movement of the MWC in the VE, however, the
resistances applied on the wheels are not considered. In [11], a
more interesting simulator is proposed. It combines both VE
immersion and haptic force feedback. However, this haptic
controller is based on a model with constant contact friction,
even though, its dynamics has a significant influence on the
behavior of the MWC dynamics. In [12] an MWC simulator
composed of a hexapod to simulate tilting movements was
proposed. However, there is no mention of wheel-ground con-
tact dynamics. The challenge of designing systems combining
immersion and haptic feedback is discussed in the paragraph.
Haptic feedback simulators are limited by simplistic dynamic
models and do not consider several physical parameters, which
reduces their realism. On the other hand, interactive platforms,
such as virtual reality simulators, offer better immersion, but
have fewer haptic feedback features. Finally, most of the
current simulators have limited movements, highlighting the
need for more advanced solutions. In this paper, A new haptic
and immersive simulator named PSCHITT-PMR has been
developed to provide a personalized experience for users. The
simulator includes a hexapod with six degrees of freedom, six
integrated displays, an ergometer equipped with haptic rollers
and an instrumented wheelchair, all controlled remotely by
a computer. Biomechanical quantities are measured by the
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Fig. 1. Image of PSCHITT-PMR Simulator

instrumented wheelchair, and haptic feedback is provided to
account for the contact forces between the wheelchair and the
ground. The SCANeR Studio software environment ensures
the immersive aspect of the simulator, Fig. 2. The design of
a custom haptic interface to drive a wheelchair locomotion
simulator in a realistic virtual environment is presented. The
interface considers a full MWC model with coupled straight
line, curved and slope/across dynamics, allowing to reproduce
wheel-ground contact resistances in real time and to estimate
the kinematic motion states of the wheelchair. A haptic
controller based on a linear time-varying (LTV) model of
the simulator dynamics is built to handle the non-linearities
of the contact friction between the MWC wheels and the
simulator rollers and to adapt to the user’s characteristics. The
MPC optimal control algorithm for LTV systems [20], [21]
is exploited to design the haptic controller, using Lyapunov’s
stability proof to ensure optimal simulator performance. The
controller generates haptic feedback felt by the user during the
push phase and vertical inertial translation of the wheelchair
during the release phase, thus providing a realistic wheelchair
locomotion experience. To assess the effectiveness of the hap-
tic interface, various standardized locomotion scenarios that
are typically encountered in an urban setting are defined and
implemented in the PSCHITT-PMR wheelchair simulator. The
remainder of the paper is organized as follows. The remainder
of the paper outline of the paper’s structure. Section II will
provide an overview of the haptic interface of the PSCHITT-
PMR wheelchair simulator. In Section III, the design of the
haptic controller will be presented. Section IV will cover the
experimental procedure, results, and discussion. Finally, in
Section V, the conclusions of the paper will be drawn.

II. MODEL REFERENCE-BASED HAPTIC INTERFACE

The PSCHITTPMR simulator was developed in the LAMIH
laboratory, specifically designed for research in the field of
assistance for people with reduced mobility. In this particular
configuration, PSCHITTPMR offers a realistic virtual environ-
ment, guaranteeing a global vision and allowing the movement
of a wheelchair in all locomotion situations.

A. User-Wheelchair-Environment Modeling

The MWC dynamics generated by the simulator must pro-
duce the same sensory-motor state as when the wheelchair is
propelled on real ground. Thus, the reliability of the simulator

relies on the realism provided by the mechanical model of
MWC-user interactions. Unlike models used in current er-
gometers, the MWC model considered in this work provides in
real-time, the complete dynamics of the wheelchair locomotion
in straight line, turn and slope/cross-slope while considering
the rolling and pivoting resistive torques.

1) General Manual Wheelchair Motion Model: The con-
sidered MWC model has 7-degree-of-freedom (DOF). Mainly
used to describe vehicle dynamics, this model has been
adapted to the wheelchair dynamics considering straight line
X , lateral Y and yaw ψ motions with the slope/cross-slope
environment inputs [15]–[17]. We assume that the dynamics
of vertical, pitch, and roll are neglected. Thus, the MWC
dynamics is expressed as follows

• Longitudinal, lateral and yaw motions dynamics

mv̇x =
∑
i=3,4

Fxi
+

∑
i=1,2

Fxpi + FxGr − Frr +mvyψ̇

mv̇y =
∑
i=3,4

Fyi +
∑
i=1,2

Fypi + FyGr −mvxψ̇

Jzψ̈ = dfFycicos(ϕ)− dfFxcisin(ϕ)− drFyri
+Tres − Tfr

(1)
• Wheels rotational movements

Jri ω̇ri = Thi −RriFxi − ηωri + Trri , i ∈ {3, 4}
Jfi ω̇fi = −RfiFxi

− ηωfi + Trri , i ∈ {1, 2}
Jci φ̈ci = dci(Fyci + Fxci) i ∈ {1..2}

(2)

Equation (1) represents the dynamics of the longitudinal,
lateral and yaw motions at the center of gravity. Equation (2)
describes the rotational wheel motions including the accel-
eration and braking motions of the front and rear wheels,
ω(f,r), as well as the yaw rotational motion of the front free
castors φci . Terms M , Jz , and Jci are respectively the mass
of the wheelchair, the inertia around the z-axis at the center
of gravity, and the inertia around the z-axis at the front wheel
pivot. While Jri and Jfi are the inertia of the rear and front
wheels.

2) Wheel-Ground Contact Force Dynamics: The accuracy
of the contact force models is crucial to reproduce the resis-
tances applied to the wheels during the movement in the virtual
environment. Generally, a linear model is used to describe
torque resistances. However, in various locomotion situations,
such as the starting movement or combined maneuvers, the
linear model becomes invalid. For this reason, the Pacejka tire
model [16], called ”the Magic Formula”, is used in this work.
This tire model is one of the most widely used in the literature
to accurately describe the behavior of the nonlinear slip force
and resistance torque in vehicle dynamics. The MWC tire-
road contact in the longitudinal direction is modeled by the
following equation

Fxi
= Disin(Ci atan(Biµi − Ei(Biµi

− atan(Biµi)))) Fzi
(3)
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TABLE I
PHYSICAL VARIABLES DESCRIPTION

Physical Description
Variables
Fxi , Fxi Longitudinal and lateral forces [N]
Thi

, Trr Human torque and rolling resistance torque [Nm]
ωri , ωfi Angular speeds of the rear and front wheels [rads−1]
vx, vy Longitudinal and lateral speeds[ms−1]

ψ̇, Tres Yaw rate [rads−1] and yaw resistance torque [Nm]
Fxgr , Fygr Gravity forces according to x and y positions [N ]

TABLE II
WHEELCHAIR MODEL PARAMETERS

Parameters Value [Unit] Parameters Value [Unit]
M 100 [kg] η 0.05 [kgm2s−1]
Jz 7 [kgm2] Jci 0.05 [kgm2]
Jωri 1.5 [kgm2] Jωfi 0.1 [kgm2]
wr 0.60 [m] wf 0.48 [m]
dr 0.22 [m] dr 0.22 [m]
Rfi 0.31 [m] Rri 0.065 [m]
µrr 0.01 kψ̇ 10
α 8 β 8.5
γ 9.5 λ 9
B 2 C 2
D 0.2 E 0.8
Cαri 1.72 [rad−1] Cαfi 6 [rad−1]

The terms Di, Ci, Bi and Ei are the intrinsic characteristic
parameters of the wheel’s tires. µi is the longitudinal slip ratio.

µr =
Rriωri − vxi

max(vxi
, Rriωri)

and µf =
Rfiωfi − vxi

max(vxi
, Rfiωfi)

(4)
During the lateral movement of the MWC, the dynamics
involved in this direction is not significant; therefore, the
lateral force Fy can be approximated using a linear model.

Fyr = −Cαri
αriFzi and Fyf = −Cαfi

αfiFzi (5)

where Cαri
and Cαfi

are the tire stiffness coefficients nor-
malized with the MWC’s wheel vertical force, respectively,
for the rear and front MWC wheels. As shown in Fig. 2, αri
and αfi are, respectively, the lateral slip angles of the rear
and front wheels. In order to create the lateral displacement
resistance effect during the MWC yaw motion, a resistant
torque mathematical model, Tres, has been developed

Tres(ψ̇) = kψ̇

(
1− e−αψ̇

)1 + tanh
(
βψ̇ − γ

)
2


(
λ− (λ− 1) tanh

(
βψ̇ − γ

)) (6)

The parameters kψ̇ , α, β, γ, and λ are the resistant torque
model parameters needed to be identified. This model calcu-
lates, in real-time, the resistant torque taking into account the
region of zero yaw velocity to deal with the chattering problem
and allowing us to avoid algebraic loops problems during
the numerical simulation. The wheelchair reference model is
validated using experimental data [10].

Fig. 2. Descriptive diagram of the PSCHITT-PMR simulator driven by the
designed haptic interface.

III. OPTIMAL LTV-MPC-BASED HAPTIC INTERFACE
CONTROL DESIGN

A. Wheelchair-Ergometer Model Estimation

As mentioned in the introduction, a nonlinear and uncertain
simulator model could decrease the controller performance, as the
optimization problem becomes computationally intensive. For this
reason, an online identification-based LTV model can successively
estimate the nonlinear contact friction between the MWC wheels and
the simulator rollers. The standard expression for the contact friction
behavior between wheelchair wheels and simulator rollers can be
written as follows [18]{

ILΩ̇L(t)−NL((Θi,ΩL(t)) = Kτ τL(t) + τhL(t)

IRΩ̇R(t)−NR(Θi,ΩR(t)) = Kτ τR(t) + τhR(t)
(7)

Equations (7) express the wheel-roller dynamics on each left (L)
and right (D) side of the simulator. Where Ω̇ and Ω are the angular
acceleration and angular velocity of the wheel. τh is the propulsive
human torque applied on the hand-rim. The parameter Kτ repre-
sents the reduction ratio between the wheel and the roller, whereas
Ni(Θi,Ωi(t)) is the contact friction torque model. In the following,
we assume that contact friction can be linearly parameterized as an
affine relationship between Ni(t) ∈ Rn and Ωi ∈ Rp and that there
is no slipping during movement

Ni(t) = Θ1(t) ΩL,R(t) + Θ2(t) (8)

Here, Θ1(t) and Θ2(t) are unknown time-varying parameters.
Θ(t) = [Θ1(t),Θ2(t)]

T can be determined in real-time using the
measured data pairs (τL,R,Ωi), i = 1, 2, ..., Nr . It should be noted
that, in this work, the objective is to simplify the nonlinear model of
the contact friction torque between the wheelchair and the simulator
ergometer rollers. To estimate the unknown time-varying parame-
ters in equation (8), an online recursive least squares identification
algorithm (RLS) is considered [19]. Using an online identification
algorithm not only allows us to estimate the contact friction dynamics
in real-time, i.e., but also ensures a successive linearization of the
nonlinear model around the current operating point at each time step
without introducing a recursive algorithm into the MPC optimization
scheme. In the next subsection, a linear MPC is designed for the
resulting wheelchair-ergometer LTV system.
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Fig. 3. Block diagram of the MPC controller of the closed loop simulator

B. LTV-MPC Controller Design
In the present part, we introduce the theoretical concepts of model

predictive control for time-varying linear discrete-time systems. The
stability of the closed-loop model predictive control is demonstrated
based on the extensive literature [20]–[22]. Consider the time-varying
linear discrete-time (LTV) systems with hard input and state con-
straints given by

ΣLTV =

{
x(k + 1) = A(k) x(k) +Bu(k) + d(k)
y(k) = Cx(k)

(9)

Where x(k) ∈ Rn is the state of the system, u(k) ∈ Rm is the control
input in the current time sample k and x(k+ 1) is the prediction of
the state in the sample k. The control input and the state are time-
varying and must satisfy the following constraints

x(k) ∈ X(k) = {x : |x| ≤ xmax}
u(k) ∈ U(k) = {u : |u| ≤ umax}

x(N) ∈ Xf (k)
(10)

Where U(k) is a compact subset U(k) ∈ Rm, X(k) is a closed
convex subset X(k) ∈ Rn with the origin included in each subset
and x(N) ∈ Xf (k) is a terminal constraint set. In the following, we
assume that there exist positive constants radius r1 and r2 such that
X(k) ⊇ Br1 , U(k) ⊇ Br2 ∀ k ≥ t with Br = {x ∈ Rn : ∥x∥ ≤ r}.
The state model (9) is a first-order approximation of the non-linear
model (7) over a time horizon i = k, ....k+N−1, where N ∈ Z+ is
the predicted horizon chosen sufficiently large to cover the transient
state of the system. The time-varying parameter A(k) is bounded,
such that ∀ i ≥ k : ∥A(k)∥ ≤ ΘA in which ΘA is a finite positive
constant. B and the vector d(k) are known and the pair (A(k),B)
is uniformly stabilizable. Furthermore, a full-state measurement of
x(k) is available at sample time k. Thus, we can formulate the time-
varying optimal control problem to be solved with the MPC approach
as follows:

V(x̂, Û , k)∗ =min
Uk

{ k+N−1∑
i=k

x̂T (i)Qx̂(i) + ûT (i)Rû(i)

+ x̂T
k+N−1

Pf x̂k+N−1 | u ∈ U
} (11a)

s.t.

xk(i+ 1) = Ak(Θi)xk(i) +Buk(i) + dk(i), i=k,...,N−1

uk(i) ∈ U(k), i=k,...,k+N−1

xk(i) ∈ X(k), i=k,...,k+N

xk(k +N) ∈ Xf (k)
xk(k) = x(k)

(11b)

in which x̂(k) = [x̂(k), . . . , x̂(k+N)] is the error trajectory between
the predicted state x(k) = [x(k), . . . , x(k + N)] and the reference
trajectory Ωref (k) = [Ωref (k), . . . ,Ωref (k + N)] over the time
horizon k+N and û(k) = [û(k), û(k+1), . . . , û(k+N−1)] is the
control variable to be optimized at time k. The pair matrix (Q,R) and

(Qf ,Rf ) are, respectively, the weight matrices (state, input command)
of the finite horizon and the infinite horizon such that Q = QT ≥
0, R = RT ≥ 0, Qf = QTf ≥ 0 and Rf = RTf ≥ 0 . The notation
ℓ(., ., .) and Pf (., .) are, respectively, the stage cost and the terminal
cost. It is important to note that the main motivation for introducing
a terminal constraint set Xf (k) and a terminal cost function Pf (., .)
compared to a standard MPC scheme is to guarantee the stability
of the closed-loop LTV system [20]. Suppose, then that the optimal
control sequence Û∗

k = {û∗
k(k), . . . , û

∗
k(k+N−1)} that satisfies the

control, state, and terminal constraints of (11b), has been determined.
For each minimization of the cost function (11a), we apply only the
first element u(k, x(k)) = û∗

k(k) of Û∗
k that allows to have the

solution Φk(k, x̂
∗
k, Û

∗
k ) for the system (9) at sample time k. Once

the next state of the system is measured, the optimization problem is
solved again, and the whole control procedure is repeated [20], [21].
In the following, we assume the persistent feasibility of the MPC law
for any reference set Xf (k) and focus on the stability conditions. To
investigate the uniform asymptotic stability of the tracking error, let
introduce the following proposition :

Proposition 1 (Total optimal cost decrease): Wwe recall that x(k)
and U∗

k are bounded because of the sets X(k) and U(k) are closed
and compact respectively, and we also know that ∥A(k)∥ ≤ ΘA and
B are bounded. Therefore, V∗

N (k, x(k)) is bounded and a decreasing
function ∀x ∈ X and it is always feasible.

Proposition 2 (ℓ(x̂∗k+N−1, û
∗
k+N−1) is less than the terminal cost):

Consider ∀x ∈ Xf (k) = Ωref (k), and the function ∆V∗
N (k, x̂(k)) =

V∗
N (k − 1, x̂(k − 1)) − V∗

N (k, x̂(k)) is a locally positive definite
function, if the following inequality holds ℓ(x̂∗k+N−1, û

∗
k+N−1) ≤

ℓ(x̂∗k−1, û
∗
k−1)− Γ(x̂k, x̂k−1)

in which Γ(x̂k, x̂k−1) =
∑N−2
i=0 ∥Q(x̂∗k(k+i)−x̂∗k−1(k+i)∥2 , where

x̂∗k(k + i) is the solution of (11a-11b) at a sample time k when
the control sequence [u∗

k−1(k), . . . , u
∗
k−1(k + N − 2)] is applied.

Proof Consider the difference function value of the total optimal cos
function at a sample time k given by ∆V∗

N (k, x̂(k)) = V∗
N (k −

1, x̂(k − 1))− V∗
N (k, x̂(k)) ≥ 0. Therefore,

∆V∗
N =

N−1∑
i=0

∥Qx̂∗k−1(k + i− 1)∥2 +
N−1∑
i=0

∥Rû∗
k−1(k + i− 1)∥2

+ ∥Pf x̂∗k−1(k +N − 1)∥2 −
N−1∑
i=0

∥Qx̂∗k(k + i)∥2

−
N−1∑
i=1

∥Rû∗
k−1(k + i− 1)∥2 − ∥Rû∗

k(k +N − 1)∥2

− ∥Pf x̂∗k(k +N)∥2
(12)

Let Û∗
k−1 = [û∗

k−1(k − 1), û∗
k−1(k), . . . , û

∗
k−1(k +N − 2)] be the

solution of the problem (11a-11b) at sample time k−1. Then for the
sample time k, we have the following control sequence solution

Û∗
k = [û∗

k−1(k), . . . , û
∗
k−1(k +N − 2), û∗

k(k +N − 1)].

After simplification, the function ∆V∗
N becomes

∆V∗
N = −

N−2∑
i=0

(∥Qx̂∗k−1(k + i)∥2 + ∥Qx̂∗k(k + i)∥2)︸ ︷︷ ︸
Γ(x̂k,x̂k−1)

+ ∥Qx̂∗k−1(k − 1)∥2 + ∥Rû∗
k−1(k − 1)∥2︸ ︷︷ ︸

ℓ(x̂∗
k−1

(k−1),û∗
k−1

(k−1))

− ∥Qx̂∗k(k +N − 1)∥2 + ∥Rû∗
k(k +N − 1)∥2︸ ︷︷ ︸

ℓ(x̂∗
k
(k+N−1),û∗

k−1
(k+N−1))

(13)
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By using the triangle inequality theorem ∥a∥−∥b∥ ≤ ∥a−b∥ on the
first term of the relationship (13), we obtain the following inequality

∆V∗
N (k, x̂(k) ≥− Γ(x̂k, x̂k−1) + ℓ(x̂∗k−1, û

∗
k−1)

− ℓ(x̂∗k+N−1, û
∗
k+N−1)

(14)

Since the value function ∆V∗
N (k, x̂(k) ≥ 0, then the condition of

the proposition 2 is satisfied.

C. Haptic control Design based on the LTV-MPC Controller
To implement the LTV-MPC control algorithm, we consider the

MWC-ergometer roller model of the simulator presented in Sec-
tion II.A

Ωi(k + 1) = Θ1(k)
Ii

Ωi(k) +
1
Ii
τi(k) +W(k)

W(k) = 1
Ii
(Θ2(k) + τh(k))

y(k) = Ωi(k)

(15)

Where the variable to be optimized is the ergometer motor torque
u(k) = τi(k), the variable y(k) = Ωi(k) denotes the output of the
MWC simulator which is the MWC wheel speed, and W(k) is a
known disturbance (see Section III.A). According to the algorithm
defined in (11a)), the optimization problem to be solved is described
as follows:

V(Ω(k)) = min
Uk

{
N∑
i=0

∥Q(Ωk(k + i)− ΩRefk (k + i))∥2

+

N−1∑
i=0

∥R uk(k + i)∥2

} (16a)

s.t.

Ω(i+ 1) = Ak(Θk)Ωk(i) +Buk(i) +Wk(i), i=k,...,N−1

τmin ≤ uk(i) ≤ τmax, i=k,...,k+N−1

Ωmin ≤ Ωk(i) ≤ Ωmax, i=k,...,k+N

Ωk(k) = Ω(k)

(16b)

∥Q(Ω∗
k(k +N − 1)− ΩRef

∗
k(k +N − 1))∥2

+ ∥Ru∗
k(k +N − 1)∥2 ≤ ϵ

(16c)

It should be noted that the constraint (16c) is the stability condition,
such that ϵ is defined from the preposition (2), [20]. Once the
optimization problem (16b is solved, the optimal control sequence
U∗(k) = [u∗

k(k), . . . , u
∗
k(k+N −1)] that satisfies the control, state,

and terminal constraints is determined and only the first element
u(k, x̂(k)) = u∗

k(k) of U∗
k is applied to compute the optimal

simulator speed.

IV. EXPERIMENTAL RESULTS & DISCUSSION

In this section, the evaluation and validation of the PSCHITT-
PMR simulator are presented. Different standardized configurations
of locomotion situations are defined and implemented in the virtual
environment. The experimental results of the LTV-MPC controller are
presented and compared with the results obtained with the controller
approach developed in [13].

A. Validation of the LTV Model Online identification
In order to validate the LTV model of the MWC-Ergometer dynam-

ics, we first set up a series of experimental tests that are carried out
with a population weight ranging from 40kg to 80kg. An excitation
torque signal with an amplitude varying between [−5, 5] is used to
excite the dynamics of the ergometer in interaction with the MWC
(7) in the entire region of the input and state constraints. To identify
the dynamics of the MWC-Ergometer system, an online identification
algorithm is implemented. The results of the experimental validation
of the speed profile of the LTV model compared to that measured
from the simulator are represented in Fig. (4). It should be noted that

Fig. 4. Experimental results of the simulator LTV model (red curve) versus
the simulator output (blue curve), in response to the excitation signal (orange
curve).

Fig. 5. A-Real-life scenario. B-Simulated scenario.

the effect of the mass variation between 40−80Kg on the LTV model
is very little visible with RMSE between 0.080 and 0.087. However,
for a user weight greater than 100kg with a low propelling torque,
the accuracy of the model begins to deteriorate, which represents the
validity limit of the LTV model.

B. Validation of the Haptic Control Interface
Two types of wheelchair locomotion scenarios commonly encoun-

tered by users in urban environments are chosen to evaluate the
haptic interface. The first type consists of reproducing wheelchair
locomotion for a straight line, a slope/cross-slope and a turn.

(a) Starts in a straight line on a flat ground and turns with a
variable radius of curvature, then returns to the initial position.

(b) Straight start on flat ground, start on a 4% slope with a rest
after the slope, straight start, followed by a second 5% slope,
rest after the slope, turn and descend the 5% slope.

(c) Start in a straight line on flat ground, go down a 7% cross
slope, and maintain the path of the cross slope.

The second scenario consists of combining all the previous ma-
neuvers to simulate, for example, an access and an exit of a
building. To demonstrate the performance validity of the LTV-
MPC haptic controller, the following parameters are considered:
A(k) ∈ [0.1175, 4.81], K = −14.4 and Θ2 ∈ [−1.9666, 1.5336],
∥Xk∥ ≤ 9.97[rad.s−1] and ∥Uk∥ ≤ 5[Nm]. It should also be
noted that the controller is implemented on SIMULINK in real-time
and the optimization problem has been solved using the YALMIP
environment with a calculation time of 4 ms. Fig. 6, illustrates the
experimental results of scenario (a), in which the top figures show the
trajectory carried out by the user. While the bottom figures show the
reference tracking. Indeed, if the user performs scenario (a) on a real
ground, when the radius of curvature is small enough, the user applies
an opposite direction torque on each wheel (green rectangle) in order
to turn. whereas when the radius of curvature is large enough, the user
applies the same direction torque on both wheels. This behavior is
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Fig. 6. Experimental validation of the haptic interface for the straight and
turn scenario (a).

Fig. 7. Experimental validation of the haptic interface for the locomotion
scenario for 2− 4% slopes (b).

similar to the one reproduced by the simulator. Regarding locomotion
on a slope (scenario b), on a real terrain, it is observed that when
the subject starts the slopes, he applies a higher propulsion torque of
the same direction in order to compensate the gravitational force and
maintain his instantaneous position. When the user goes down the
slopes, he applies a torque opposite to the direction of the wheels
to brake the movement, The same behavior is observed with the
locomotion on the simulator, Fig. 7. Locomotion on a transverse
slope is the most feared by people with reduced mobility. In fact,
the direction of the wheelchair is perpendicular to the direction of
the cross-slope. Therefore, the gravitational force is more important
on one wheel than on the other, which obliges the user to compensate
to maintain his current position. This same behavior is observed on
the test of scenario (c) on the simulator for a transverse slope of 7%,
where the position of the right wheel is on the high side of the slope
compared to the position of the left wheel which is on the low side.
It can be seen in Fig. 8 that the user applies a higher torque to the
left wheel (green rectangle) than to the right wheel to maintain its
trajectory on the cross slope.

C. Robustness with respect to uncertainties

To illustrate the effectiveness of the proposed controller, the
experimental results of scenarios (d) and (e) are performed and
compared to the results obtained with the EMPC controller proposed
in [12]. The evaluation of the two controllers is done using three
performance indices, root mean square error (RMSE), normalized
root mean square error (NRMSE), and the correlation coefficient (R-

Fig. 8. Experimental validation of the haptic interface for the locomotion
scenario for 7% cross slope (c).

Fig. 9. Graphical evaluation of the LTV-MPC controller tracking error within
the system constraint polygon.

value) presented in Tab. III.

RMSE =

√√√√ 1

Ndata

Ndata∑
i=1

(xi − xreeli)
2, NRMSE =

RMSE

xreel

R =

∑Ndata
i=1 [(xi − x)(xreeli − xreel)]√∑Ndata

i=1 (xi − x))2
∑Ndata
i=1 (xreeli − xreel)2

(17)

Here, xreeli and Ndata represent the measured output speed of the
MWC simulator and the total number of data (estimated speed and
actual speed), respectively. The experimental results are presented in
Tab. III, where we notice that the performance indicators of the two
approaches are very close in terms of value. However, the LTV-MPC
approach is based on a simple model and adaptive to the variation and
nonlinearity of the contact friction even during sudden variation of
the reference speed when descending a slope, which makes the LTV-
MPC approach more promising in the context of this work. Lastly,
Figure 9 shows a graphical presentation of the LTV-MPC controller
tracking error within the system constraint polygon. These results
clearly confirm that the LTV-MPC approach stabilizes the tracking
error around the origin even with different weights during the sudden
variation of the reference speed with a braking torque disturbance.

V. CONCLUSION

In this work, a wheelchair locomotion simulation platform driven
by a haptic interface has been presented. Based on a dynamic 3D
model of the wheelchair, the designed haptic interface allows us to
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TABLE III
PERFORMANCE EVALUATION OF EACH CONTROLLER USING THE STATISTICAL INDICATORS RMSE, NRMSE, R-VALUE.

LTV-MPC EMPC
Subject Gender/Age Weights (Kg) Side RMSE NRMSE R Value RMSE NRMSE R Value
S1 M-40 yo 85 Left 0.3604 0.0730 0.9667 0.2571 0.0382 0.9897

Right 0.3640 0.0583 0.9653 0.2245 0.0288 0.9919
S2 F-28 yo 53 Left 0.2925 0.0786 0.9658 0.1953 0.0388 0.9873

Right 0.2588 0.0713 0.9720 0.1817 0.0358 0.9890

simulate a wide range of environmental situations that people with
reduced mobility face in their daily lives. Furthermore, this paper
gives particular attention to the design and implementation of the
LTV-MPC-based haptic controller using a linear model with time-
varying parameters. The LTV-MPC controller is designed taking into
account the input and output constraints of the real system, the
variation of the contact friction between the wheels of the wheelchair
and the roller bench due to the different weights of the users (between
40 and 100kg), and the internal and external disturbances i.e., the
torque of the user during the pushing phase. A complete stability
analysis of the LTV-MPC controller was presented by introducing
sufficient conditions for uniform asymptotic convergence of the
tracking error of the closed-loop system at the origin. Realistic and
standardized experimental scenarios were defined in order to validate
and evaluate the performance of the controller by comparing it to
an EMPC scheme based on a nonlinear model. The experimental
results showed that the LTV-MPC controller is as able to follow the
reference speed and ensure the durability of stability over time as
the EMPC controller even during difficult driving maneuvers such
as hill climb, turns and hill descent, which clearly confirms that the
LTV-MPC approach stabilizes the tracking error in the vicinity of the
origin even with different weights, during the sudden variation of the
reference speed with a braking torque disturbance. For future work,
the proposed haptic interface will be validated by an experimental
campaign in the framework of the CapaCITIES project, involving a
dozen subjects with motor disabilities.
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