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Abstract—This paper introduces Deformable Fractional Fil-
ters (DFFs) for Convolutional Neural Networks (CNNs). DFFs
enhance the efficiency of conventional Deformable Convolu-
tional Filters by introducing a compression mechanism rooted
in techniques from fractional calculus. Concretely, our method
reduces the parameter overhead requirement of convolutional
filters by replacing the kernel with a fractional approximation,
which can be trained using only three parameters – regardless
of the kernel size. DFFs present a compelling use case for
the compression of networks that require large kernel sizes.
To demonstrate the benefits of DFFs, we report experimental
results across a diverse set of computer vision problem domains,
including classification, semantic segmentation, and medical
imaging. Our experiments illustrate the favorable performance
and regularization properties presented by DFFs in comparison
with other baseline CNNs.

I. Introduction

Computer vision has generated an impressive array of
increasingly sophisticated techniques over the last decade,
driven chiefly by Convolutional Neural Networks (CNNs).
Modern deep learning models have achieved state-of-
the-art accuracy in a variety of diverse tasks, including
image classification [1], semantic segmentation [2], object
detection [3], pose detection [4], among others. Much of
the research in this area stems from the development
of increasingly deep architectures, comprised of millions
(even billions [5]) of trainable parameters to continuously
achieve better performance. Due to the memory and com-
putational constraints of these large-scale models, many of
these outstanding results have yet to fully translate over
to edge computing devices and other compute constrained
environments.

As an alternative to training and deploying unwieldy
overparameterized models, researchers have recently fo-
cused on more sustainable network designs [6] to generate
smaller and more efficient models at the cost of a poten-
tially minor trade-off in accuracy. There have been many
approaches proposed in this vein, including ShuffleNet [7],
MobileNet [8], HENet [9], and SqueezeNet [10].

Motivated by prior research exploring the addition
of adaptive parameters to activation functions [11] and
convolutional kernels [12], in this work we apply concepts
from fractional calculus [13] to enable a neural network to
learn a reduced representation of a convolutional kernel
in functional form, i.e., as a fractional kernel. In addition,
we demonstrate that neural networks utilizing fractional
kernels perform comparably to state-of-the-art models on
several benchmark data sets (MNIST [14], TCGA-LGG

[15], and ADE20K [16]), while having a reduction in the
number of kernel parameters in the compressed layers.

We furthermore show that this novel convolutional
paradigm facilitates the creation of generalized high-
performance architectures that are more efficient in terms
of training time and accuracy. In particular, our analysis
focuses on larger kernel sizes (e.g., 5×5, 7×7 and above), as
our method can leverage the benefits of these larger kernels
while yielding appreciable increases in model compression
rates. Recent research [17], [18] has demonstrated the
superior performance of Convolutional Neural Networks
using large kernel sizes on several applications, including
high fidelity computer visions tasks including semantic
segmentation, super-resolution upsampling, and medical
imaging; moreover, the positive benefits of using larger
kernels to increase the effective receptive field of a CNN
is well-documented [19].

II. Related work
Over the past decade, computer vision research has

tended to leverage the benefits of the compositional struc-
ture of high-capacity, deep networks [20]. Recent work [21],
however, reveals that many deep models suffer from severe
inefficiencies due to the presence of gross overparame-
terization. These discoveries have spurred interest in the
development of more efficient CNNs; SqueezeNet [10] and
MobileNets [8], for example, compress the convolutional
kernels by using N×N×1 kernels instead of N×N×3, thus
reducing the number of channels processed by the convo-
lutional layer, yielding a reduced model in the number of
trainable parameters. In [22], the authors demonstrate a
dynamic filter framework in which a network generates
a single filter used by all nodes in the first layer of
convolutional kernels and is trained with the other network
parameters.

Pruning represents a common technique used to reduce
the memory and compute overhead required by overpa-
rameterized models [23]. Pruning methods do not conflict
with the present work; both pruning and fractional filters
can further augment model compression results. Similarly,
memory-reducing approaches such as quantization [24] can
also be applied in concert with our technique to reduce
the number of network parameters. As an alternative ap-
proach to improving CNN model efficiency, [25] introduced
Deformable Convolutions and Deformable ROI pooling
based on augmenting the spatial sampling locations in
CNN modules using trainable offset parameters for each
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filter. These techniques were further improved in [26], in-
troducing a learnable modulation parameter that controls
the spatial support of the deformable convolution.

A. Fractional Derivative
The theory of fractional calculus [27] has previously

been applied to neural network design. In [11], the au-
thors use fractional calculus to group existing activation
functions into families by defining the fractional order
of a primitive activation function that is tuned during
training. In this way, each neuron in the network learns a
bespoke activation function, demonstrating, for instance,
that ResNet-18 utilizing this adaptive activation method
can outperform a ResNet-100 topology [28]. In a most
recent work [29], authors introduced a generalized Frac-
tional Convolutional Filter (FF), which has the flexibility
to behave as any novel, customized, or well-known filter
by employing only five parameters. This parameter re-
duction provides a nominal 5X parameter compression
per kernel compared to standard (5×5) convolutional
kernels while preserving generalization capacity. In recent
years, fractional calculus has successfully served as a tool
for modeling complex dynamics [30], for understanding
wave propagation [31], and for working with quantum
physics [32], among other applications.

To understand how a fractional derivative works, we
begin with a simple, illustrative example. The natural n-
derivatives of the function f(x) = xk are defined as:

daf(x)

dxa
= k(k − 1)(k − 2) · · · (k − a+ 1)xk−a, (1)

=
k!

(k − a)!
xk−a. (2)

For the case above, the factorial operation can only be
defined for non-negative integer numbers.

Γ(z) =

∫ ∞

0

t(z−1)e−tdt, (3)

a known efficient method to compute Gamma is [33]:

Γ (z) =
e−γz

z
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k=1

((
1 +

z

k

)−1

e
z
k

)
, (4)

where γ is the Euler-Mascheroni constant [34]. Thus, by
replacing the factorial in Eq. (2) by the Gamma function,
the fractional derivative is then given by [35]:

Daf(x) =
daf(x)

dxa
=

Γ(k + 1)

Γ(k + 1− a)
xk−a. (5)

The above definition represents the fractional derivative
of a function f(x) = xk valid for k, x ≥ 0. In the following
sections, we apply these fractional calculus concepts to
render a a fractional kernel used in our DFFs modules.

Fig. 1. Plots generated by our fractional filter definition in Eq. 6.
The fractional derivative of the swish function xσ(x) produces a wide
range of function morphologies, as shown. In addition, because the
filter has a corresponding explicit functional form, generating filters
of varying sizes requires no additional parameter overhead.

B. Swish Fractional Filter

By calculating the fractional derivative of the so-called
Swish function f(x) = xσ(x) [36], one can generate
approximations of many popular filters used in computer
vision applications [37], including the Gaussian, Sobel, and
Laplacian (see Figure 1). In addition, it is possible to
produce an infinite number of novel filters that represent
interpolations between these conventional filter types. To
this end, we approximate the fractional derivative of a
Swish function using truncated series as follows:

Dαf(x) =
1

hα

15∑
n=0

(−1)nΓ(α+ 1)(x− nh)σ(x− nh)

Γ(n+ 1)Γ(1− n+ α)
, (6)

where α denotes the fractional derivative order and Γ(α)
represents the gamma function defined in Eq. (3). By
tuning a single trainable parameter (α) in our fractional
filter construction, generating a diverse family of filters is
possible, as shown in Figure 1. Despite the truncation ap-
plied in Eq. (6), a model requiring many such calculations
for training can be computationally expensive. In order
to alleviate this computational overhead, we formulate a
more efficient, recursively-defined approximation of the
fractional derivative of the Swish function f(x) = xσ(x)
as follows: Let g1(x) denote the Swish function:

g1(x) = f(x) = xσ(x), (7)

where the first derivative of g1(x) is given by

g2(x) = σ(x) + xσ(x)(1− σ(x)), (8)

Following this approach for the subsequent derivatives
and using g(i+1)(x) = Dixσ(x) to represent the i-
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derivative of the Swish function, one can similarly derive
the following higher-order derivatives:

g1(x) = xσ(x), (9)
g2(x) = g1(x) + σ(x)(1− g1(x)), (10)
g3(x) = g2(x) + σ(x)(1− 2g2(x)), (11)
g4(x) = g3(x) + σ(x)(1− g2(x)− 3g3(x)). (12)

From this sequence of derivatives, it is possible to
approximate any fractional derivative by adding the α
parameter in the range (0, 1).

C. Two Dimensional Filters
To define a two-dimensional filter, we independently

compute the fractional derivatives of the swish functions
for x and y and calculate the exterior product of the two
generated vectors. Concretely, we compute the fractional
derivative of the two-dimensional fractional kernel as the
realization of Dαf(x)×Dβf(y). The memory benefits of
using the fractional filter increase according to the size
of the filter. For example, a 3 × 3 kernel will yield a
reduction from 9 to 3 parameters for each standard kernel
replaced by a fractional kernel in a neural network layer.
During training, every round of backpropagation requires
recomputing FF parameters and the per-cell filter values.

During inference, the fractional filter is initially cal-
culated (just once, when loading the network) from
the stored parameters and then integrated into a CNN
workflow, just as with traditional kernels. This initial step
requires the evaluation of the fractional derivative over the
N ×N parameters of the kernel (e.g., 25 elements in the
case of a 5 × 5 filter). By contrast, during training, the
evaluation of the filters is required once per iteration, but
we only need to compute M ×N values per filter. In the
2D case, we also compute the DbG(y), so that the (i, j)
components of a FF are defined: K(i, j) = Dαf(i)·Dβf(j)
for 1 ≤ i, j ≤ N (see Figure 2).

III. Deformable Fractional Filter
We augment the deformable convolution framework

introduced in [25] by: (i) replacing conventional filters
with 2D fractional filters, and (ii) incorporating a com-
pression of the number of trainable offset and modulation
parameters by using a simple linear projection. Regarding
(ii), this compression process helps maintaining a low
number of total trainable parameters required for DFFs
(including the parameters required for 2D fractional filters
and deformable offsets).

Deformable convolutions add 2D learnable offsets to
regular grid sampling locations for standard convolutions.
Including these offset sampling locations allows for the
free-form deformation of the sampling grid, which means
that convolutional filters can attend to groups of pixels in a
more dynamic and non-rigid fashion than in conventional
implementations. Note that deformable convolutions in-
troduce an additional 2N trainable offset parameters for

Fig. 2. The computation of the N2 elements of a filter are executed
by the exterior product of the N elements on the x-axis and the
N elements on the y-axis. The remaining values are calculated by
multiplying these x and y vectors.

each kernel’s original N filter values (one for each x, and y
filter offset, respectively). In our implementation of DFFs,
we require 2N

k trainable offset parameters, where k denotes
a linear projection factor (we use k = 2 in our experi-
ments). [25] demonstrated performance improvements on
object localization and segmentation tasks over baseline
CNN models. while [26] improved deformable convolutions
by adding a trainable modulation parameter that controls
the spatial support of the convolution.

Figure 3 provides a summary schematic of our De-
formable Fractional Filter construction. As shown, we re-
place the standard convolution filter employed by [25] with
our 2D fractional filter, defined as Dα(xσ(x)) ·Dβ(yσ(y));
we furthermore enable the modulation mechanism intro-
duced in [26]. Finally, to reduce the total parameter over-
head required for DFFs, we additionally include trainable
linear projection operations (shared per layer) for the offset
and modulation parameters in each DFF. Our experiments
also utilized a 2X compression of both the offset and
modulation parameters.

Fig. 3. The Deformable Filter modified by replacing the conventional
convolutional filter with our fractional filter.
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IV. Experimental Results
To analyze the benefits of the proposed methods,

we conducted experiments on a set of standard models
employing convolutional and deformable filters, comparing
with modified versions using our DFFs filters across four
datasets: MNIST [38] and FASHION-MNIST [39] for
image classification, ADE20K [16] for semantic segmen-
tation, and TCGA-LGG [15] for medical image segmen-
tation.

A. MNIST
The MNIST dataset was employed to train and test

four different models (Table I); A standard five-layer CNN
model and three variations of the model by modifying
its last Convolutional layer with a Deformable (DF),
Deformable Fractional (DFF), and Fractional (FF) filter,
respectively. The results of the training and validation
steps are presented in Figure 4. As can be seen, the
Fractional Filter model achieves a lower accuracy than
the standard, as the filter employed approximates the
traditional convolution causing a compression in the re-
quired convolution parameters (from 9 to 3). On the other
hand, DF filters generate greater accuracy, while the DFF
filters achieve an intermediate performance between both
(preserving performance while requiring fewer number of
parameters); For instance, a compression of 5X is achieved
using a forced parameter σ = 1 (Table II). The use of DFFs
additionally demonstrates consistently faster convergence
and improved generalization properties when compared to
baseline models.

TABLE I
MNIST custom topology employed for evaluations

Name Output Size std (w × h, ch, s) dsf5

Conv1 28× 28× 32 3× 3, 32, 1 3× 3, 32, 1

Conv2 26× 26× 32 3× 3, 32, 1 3× 3, 32, 1

Conv3 16× 16× 32 3× 3, 32, 1 3× 3, 32, 1

Conv4 8× 8× 32 3× 3, 32, 1 3× 3, 32, 1

Conv5 1× 1× 32 3× 3, 32, 1 DSF 3× 3, 32, 1

FC 10 32× 10 32× 10

TABLE II
Parameter’s compression after applying Fractional filters

Model Parameters Model Parameters
5-CNN model 37912 DF model 53248
FF model 31466 DFF model 40613

B. FASHION-MNIST
As a second experiment, we evaluated the aforemen-

tioned model architectures on the FASHION-MNIST
dataset [39]; these results are shown in Figure 5. Our

Fig. 4. Test loss and accuracy for the MNIST Dataset. Std: Standard
5-layer model, DF: Deformable filter, DFF: Deformable Fractional
filter, and FF: Fractional filter.

experimental results show that both the FF and DFF-
based CNNs outperform the baseline model for classifica-
tion accuracy and training efficiency. Furthermore, the FF
model outperforms the baseline CNN despite being more
compact; similarly, the DFF model performs comparably
with the larger baseline DF model.

Fig. 5. Test loss and accuracy for experimental models using the
FASHION-MNIST Dataset. std: Standard 5-layer model, DF: De-
formable filter, DFF: Deformable Fractional filter, and FF: Fractional
filter.

C. ADE20K:Semantic segmentation
Next, we tested our method on a semantic segmentation

task using the ADE20K [16] dataset. In our experiments,
we employed the dilated ResNet50 architecture provided
by [40] as a baseline model. In our implementation, we
replaced the decoder block’s final convolution (the layer
with the largest parameter overhead) with a DFF layer,
then we trained the model from scratch during 30 epochs.

Once trained, the modified model achieves a general
accuracy of 80.27 % on the test dataset. Furthermore, as
presented in Table III, our model using a DFF layer was
able to achieve comparable performance with the stan-
dard CNNs model while employing much fewer trainable
parameters (approximately 24 % fewer parameters than
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UperNet50 [41]), even surpassing the performance of larger
models.

TABLE III
Validation accuracy and size of semantic segmentation models

employing the ADE20K dataset [40]

Model (Encoder + Decoder) Parameters Accuracy
MobileNetV2dilated + C1 2181932 76.8
MobileNetV2dilated + PPM 13588396 78.26
ResNet18dilated + C1 12248940 77.41
ResNet18dilated + PPM 24566636 79.29
ResNet50dilated + PPM 51579116 80.13
UperNet50 64222294 80.23
DFF-ResNet50dilated + PPM (Ours) 39106871 80.27
ResNet101dilated +PPM 70571244 80.91

In order to help differentiate the qualitative perfor-
mance of the filters, we compared this modified model
with a standard baseline (ResNet50 Dilated) for semantic
segmentation on a testing video. We show representative
examples of this experiment in Figure 6. The model using
DFFs consistently renders smoother, achieving contiguous
segmentation frames compared with the standard network
architecture while requiring fewer model parameters.

Fig. 6. Segmentation performance of the Deformable Fractional
model against the standard ResNet50 model [40] using a random
indoor video.

D. TCGA-LGGrepre: Segmentation for Medical Images
We additionally tested DFF-based architectures on a

challenging medical segmentation task on the TCGA-LGG
dataset [15]. In this experiment, we applied the U-Net [42]
model implemented in [43] as a baseline architecture and
replaced the first convolutional layer in the first and last
resNet blocks with a DF, FF, and DFF layer, respectively,
using the same layer parameters. Next, we trained the
model from scratch during 20 epochs (Figure 7).

As can be seen in Figure 7, the model with the
Deformable Fractional Filter layer achieves better con-
vergence speed in both training and validation datasets
compared with the standard model (Figure 8) while
rendering a comparable accuracy performance, despite
requiring significantly fewer parameters (Table IV).

Fig. 7. Training and *validation* loss reached for the models using
a subset of the TCGA-LGG dataset for a standard (std) and a
Deformable Fractional filter (dff) model.

TABLE IV
TCGA-LGG U-Net evaluation results

Model Parameters T. Loss V. Loss
U-Net 7763041 0.06917 0.45715
DF-U-Net 7779376 0.06998 0.45847
DFF-U-Net 7769281 0.06516 0.45563
FF-U-Net 7750177 0.07018 0.47596

Fig. 8. Segmentation results on several representative test images
from the TCGA-LGG dataset, after training for only two epochs. The
DFF model demonstrates strong generalization performance relative
to the baseline model, even at the early stages of training. Top: U-Net
model with a DFF layer on the first and last Resnet block. Bottom:
Standard U-Net model.

V. Conclusions
In this paper, we introduced Deformable Fractional

Filters for CNNs. DFFs represent a novel convolutional
network module that offers compression benefits and
improved model expressivity. Leveraging fractional cal-
culus, DFFs reduce the parameter overhead requirement
of convolutional filters by replacing traditional filters
with a fractional approximation. Through experiments,
we demonstrated the favorable performance and regular-
ization properties of DFFs compared with baseline CNNs
across a wide variety of popular datasets.
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