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Abstract—A novel mechanism to generate non-revisiting uni-
form coverage (NUC) paths on arbitrarily shaped object surfaces
is presented in this work. Given a non-planar surface, non-
zero curvature makes traditional homeomorphic fitting of regular
template coverage paths from planar regions onto the object sur-
face non-distance-preserving. Any coverage path with a realistic
tooling size derived in this way will suffer from overlaps and
missing gaps when transformed onto the object surfaces, unable
to uniformly cover the target. To overcome this, a discretisation
process is adopted to represent the object surface as a uniform
unstructured mesh, with resolution set in accordance to the tool
size. It is proven that a coverage skeleton path must exist by
mesh subdivision refinement which, after a local optimisation step
to improve overlap, missing gaps and smoothness, gives rise to
template-free superior NUC paths. Extensive simulation examples
are presented to prove the validity of the proposed strategy in
realistic settings. The proposed scheme is able to achieve 95.9 %
coverage on benchmark surface tests, outperforming comparable
coverage algorithms such as a homeomorphic boustrophedon
mapping which can at best achieve 80.9% coverage, or more
recent state-of-the-art methods able to reach 94.7% coverage. An
accompanying video is supplied with examples, including a real-
world implementation of a NUC path tracked by a manipulator.
An open-source implementation has been made available.

Index Terms—Coverage Path Planning, Uniform Coverage,
Mesh Subdivision

I. INTRODUCTION

HE Coverage Path Planning (CPP) [1] task on a non-

planar surface seeks to reveal a path such that the number
of traversed points is maximised. The problem is present
in a wide range of industrial applications, such as terrain
coverage [2], bathymetric surveying [3], surface inspection [4]
or agricultural field mapping [5]. In certain situations, uniform
surface coverage [6] becomes a critical feature for the resulting
path. This is a special case that takes into consideration
the area effected by the tool on the surface and seeks to
maximise the overall surface covered whilst minimising the
overlap between tool traces. This is apparent for instance
in painting tasks where overspray results in uneven coating
and wasted material [7], contact-based surface inspection with
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Fig. 1. Problem illustration with the generalising of a back-and-forth square
template coverage path in a rectangular (top row) and arbitrary polygon target
planar regions (bottom row). (a) A specific coverage path design where the
number of path turns is calculated in accordance with the length of the
rectangle (i.e. not as established by the template coverage path). (b) The
coverage path generated by homeomorphic fitting, which cannot uniformly
cover the region, gaps appearing between the path slices as a result of
horizontal stretching. (c) An example of the specific path design, illustrating
how (top) for arbitrary regions they do not always exist, and (bottom) where
cellular decomposition is adopted, separating the target region into sub-cells
and designing a coverage path within each one. (d) A conformal area fitting
mapping homeomorphism (Schwarz-Christoffel [10]) can be easily fitted into
an arbitrary homeomorphic region. However, the coverage path is no longer
uniform in the target region, leading to overlaps when using a non-zero size
tracing tool, and missing gaps between the path slices.

inefficient revisiting [8], or abrasive surface finishing processes
such as marine growth water-blasting removal from hulls,
where minimal over-coverage prevents fatigue cracks [9].
This specialised application, referred to as the Non-revisiting
Uniform Coverage (NUC) task, is the objective of this work.
CPP for planar regions has been intensively investigated.
The most popular strategies are based on cellular decompo-
sition. For polygonal regions, the area is often firstly decom-
posed into cells with elemental shapes such as trapezoids, rect-
angles, and circular regions, and then independently covered
by designing template coverage paths within each cell [9], as
depicted in Fig. 1(a) and (c). When the region cannot be suit-
ably approximated by polygons, grid-based discretisation [11]
is adopted to approximate the coverable region into grids, and
template coverage paths [12] are designed in the grid-maps.
An alternative set of algorithms generalise the coverage
solution of standard template regions into arbitrary target
regions, where the key step is a homeomorphic transformation
between the two regions. Two simple examples of planar
homeomorphisms from a unit square to a rectangle and an



arbitrary polygonal area are illustrated in Fig. 1. Mathe-
matically, as long as the regions have the same number of
interior boundaries, or “holes” [13] (as in the example), a
homeomorphism always exists, whereby the template coverage
motion in the unit square (exemplified by a back-and-forth
motion, shown in the figure) can always be deformed to fit
into the target surface. However, solving for the NUC problem
is non-trivial because metric distances cannot be preserved by
homeomorphic mappings, as illustrated by Fig. 1 (b) and (d).
More formally, no homeomorphic mapping can simultaneously
preserve both the topological layout of a template coverage
path and the uniformity of the resulting coverage path. The
problem is further compounded when the surface is non-
planar, for instance when seeking a CPP on the surface of
an object to be tracked by a manipulator [14]. With non-
zero curvature at every surface point, projecting a template
coverage path onto a non-planar surface will always render a
non-uniform path in the target region. Fig. 2 illustrates this
point by projecting various planar coverage solutions onto a
saddle grid surface.

Save from simpler objects which can be suitably described
by basic analytical expressions (spheres, cylinders ...), more
complex 3D surfaces are geometrically modelled by polygonal
regular meshes. These are in turn often parameterised (e.g.
NURBS) as that makes for more effective model manipulation
(infinite scaling, textures, mesh completion, re-meshing, etc),
hence the representation choice in the computer graphics or 3D
engineering domains. A closer inspection of the NUC problem
from a meshing perspective offers insightful observations into
the structure of the problem that lends itself to an alternative
solver proposition that readily reveals uniform coverage paths
for non-planar surfaces. Coverage routes obtained by homeo-
morphic fitting as described above can be effectively regarded
as a set of ordered waypoints drawn on the structured convex
polygon selections that make up the polyhedral surfaces, e.g.
the grid facet centres in Fig. 2 (left) and (middle). Whilst
paths must be non-uniform as subjected to the unavoidable
phenomenon that occurs when projecting a planar coverage
path onto a non-planar surface, it is however possible to
obtain a set of waypoints that lay uniformly distributed on
a freeform surface [15] when the mesh is unstructured, as
shown in Fig. 2 (right) '. It is clear that with the uniform but
unstructured nature of the surface mesh comes the realisation
that the waypoints are unordered, and that the design of a non-
repeating visiting sequence of all the waypoints to produce a
NUC path remains to be solved.

This work will prove that by said discretisation of the
surface into an unstructured mesh, followed by the subdivision
of all the mesh facets and explicit utilisation of the local
connectivity between adjacent facets on the resulting mesh,
a template-free coverage skeleton path can be obtained. With
the coverage skeleton uniformly laid on the surface, uncovered
surface regions and revisited surface regions are uniformly
distributed in the vicinity of the coverage skeleton. A freeform
surface representation then makes naive local stochastic opti-

where the centre of each facet is assumed covered by a fixed size footprint
representing the tool of interest (painting, blasting, polishing, etc.)
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Fig. 2. An illustration of the relationship between the structuredness of
the surface mesh representations on a non-planar surface, and the topological
layout of coverage paths. Given a structured grid surface, a template boustro-
phedon (left) and spiral (middle) paths are first designed in a flat square grid,
and then fitted onto the target surface through homeomorphism, rendering
geometrically non-uniform paths on the surface. By suitably discretising the
surface first, a coverage skeleton (not shown) can be effectively generated
in-situ for a uniform but unstructured mesh (right).

misation agreeable to fine-tune the coverage skeleton to both
augment surface coverage and eliminate gaps as the final NUC
solution.

The novel contributions in this work towards a path planner
that constructs a non-revisiting route for uniform coverage
motion can thus be summarised as:

1) Reformulating the problem as a planning problem in an
unstructured mesh representation.

2) Eliminating topological constraints on the shape of the
target surface thus conferring full automation to the
coverage task. The scheme relies only on the local
connectivity on the surface facets, thus making it suitable
to closed surfaces with any number of holes (non-
zero genus), and compatible with any prior higher-level
cellular decomposition.

3) Providing proof that mesh refinement whereby the facet
edges are divided once, is sufficient to guarantee the
existence of a non-repetitive sub-facets visiting sequence
in the refined mesh.

4) Open sourcing an implementation 2.

The remainder of this paper is organised as follows 3.

Section II reviews existing literature. Section III formally de-

scribes the NUC problem, and our motivation to the proposed

solution methodology. Section IV describes the proposed

Zhttps://github.com/ZJUTong Yang/NUC
3 A video complementing the manuscript with details of the work and addi-
tional experimental results can be found in the open-source code repository.



algorithm to generate a guaranteed coverage path for any non-
planar surface. Experimental results from simulation and with
a real experiment where a NUC path is tracked by a robotic
manipulator on an actual object are collected in Section V,
with final concluding remarks gathered in Section VI.

II. RELATED WORKS

There has been a large body of works focused on the
coverage task in planar regions [16], where the mainstream
approach is a two-stage process: first dividing the target
region into several easy sub-regions, the so-called cellular
decomposition [17], and then constructing the coverage paths
within each sub-region, referred to as geometric coverage
path planning. Generally, cellular decomposition methods [18]
have significantly decreased the difficulty of geometric CPP
generation, hence the geometric coverage path in sub-regions
can be trivially designed. For example, in trapezoidal sub-
regions [19] and rectangular sub-regions [11], the adoption
of boustrophedon paths [20] is natural, and in circular cells
the spiral coverage is straightforward. For a non-analytical
representation of a region, discretising the coverable region
into planar grids [11] has been a popular strategy.

Coverage solutions of non-planar surfaces are far less
mature [21]. Approximating the surface by curvilinear coordi-
nates, [22] proposed an extended scanning curve algorithm. In
analogous to algorithms for planar regions, non-planar surfaces
are split into easy sub-regions, and a coverage motion is
projected from a planar area onto each sub-region. This im-
poses some challenges: On the one hand, finding a “suitable”
surface division during the cellular decomposition processes
is non-trivial and may require manual intervention [23]. On
the other hand, each sub-region is still non-planar, so the lack
of uniformity challenge prevails. Hence, coverage tasks with
consideration of non-zero contact tool sizes have mainly been
restricted in the literature to near-flat workpieces [24]. In all
these approaches, the planar coverage motion was projected
onto the target surface, and the inevitable variations in the
tool gap width and overlapping derived from the tool motion
were neglected.

There is a final family of solutions that do not rely on
coverage path patterns, and instead seek uniform coverage
curves analytically. Isoparametric line sampling for inspection
planning [25] considers each facet on the mesh as an analytical
planar region. Exact geodesic distances of every point to a
given source point can then be calculated facet-wise [26], and
a set of analytical iso-contour curves are constructed on the
given mesh [13]. Calculating such iso-contour coverage paths
is theoretically sound but also costly. Moreover, the detailing
in the discrete mesh representation of an object goes beyond
an analytic approximation of the object surface, meaning that
any local change in the mesh vertices’ location can change
the distance fields over the whole mesh substantially. In
effect, the results are similar to an analytic (e.g. polynomial)
approximation of the surface, with severe limitations when
it comes to being effectively adapted to real-world industrial
applications with complex objects to manipulate.

In practice, geometric template coverage remains the most
widely adopted NUC scheme. More variants keep being pro-
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Fig. 3. [Illustration of non-revisiting coverage paths. (a) Case where a
non-revisiting uniform coverage path does not exist. (b) Illustration of the
continuous path deformation process from non-full to full coverage.

posed, e.g. the recent scheme in [27] with boustrophedon
motions adapted to traverse non-planar surfaces. The distance
between consecutive parallel segments of the deformed bous-
trophedon motion is determined waypoint-wise to minimise
overlap and missing gaps. There remain no theoretical guar-
antees for geometric uniformity. And whilst cellular decompo-
sition strategies can partly relieve the problem, the challenge
of uniform coverage motion within each cell remains.

III. PROBLEM STATEMENT

Non-revisiting Uniform Coverage. Given a surface and a
non-zero size tracing tool, the non-revisiting uniform coverage
(NUQC) task is defined as finding a non-selfcrossing tool path
that visits the maximum number of points on the surface,
whilst minimising uncovered and overlapped regions.

Uniform Unstructured Mesh and Coverage Skeleton.
A non-planar surface can be either non-uniformly described
by a structured representation, or uniformly described by an
unstructured representation. A process whereby a coarse but
uniform coverage skeleton path is first designed onto the
surface is proposed, wherein the surface needs to be initially
discretised into a mesh as a prime to find a valid coverage
skeleton within. However, a noticeable difficulty in generating
a coverage skeleton is that it does not always exist on any
arbitrary mesh, as seen by the counterexample in Fig. 3a.
To overcome this, necessary modifications are proposed for a
generic facets coverage solution that is applicable to arbitrary
meshes. It is noted that, by definition, any non-revisiting
coverage path is always non-selfcrossing, thus by continuously
deforming (shrinking) a coverage path, it will always be
transformed to the locally shortest path connecting the starting
and ending facet. We are inspired to consider its opposite as
proof (see Fig. 3b for a visual illustration). Given a trivial
initial path, by continuously deforming (stretching) it will be
finally transformed into a non-revisiting full coverage path. In
this paper we exercise this strategy, on uniform unstructured
meshes, for coverage skeleton generation.

IV. NUC ALGORITHM

The steps to generate the NUC solution for an arbitrary
surface are presented in this section. Whilst the coverage
skeleton generation (Step 1 and 2) can be applied standalone to
coverage tasks on discrete meshes, the full solution is tailored
to an analytic representation of the surface (Step 3). Theoret-
ical proofs that a linear-complexity coverage skeleton exists
in any sub-divided mesh, with no constraints on the global
shape (rectangular, circular, convex ...) or the connectivity of
the surface, are also provided therein.



Fig. 4. Mesh refinement: facet partitioning by edge division.

Step 1: Surface Discretisation

The surface must first be discretised into a mesh. The mesh
need not be structured, whilst the uniformity of facets is
the focus of this work. This is an established topic (e.g. in
computer graphics) where various approaches are permissi-
ble, such as resampling-based [28], Voronoi-based [29], and
virtual-interaction-force-based [30] methods. A more uniform
construction of the discrete mesh certainly improves the uni-
formity of the solved path with the proposed algorithm. To
reveal the main benefit of producing a coverage skeleton,
the simplest open-sourced isotropic explicit re-meshing tech-
nique [31], available in MeshLab [32], is employed.

The choice of resolution for the unstructured mesh must
be such that the generated coverage skeleton is neither too
dense (resulting in overlap) nor too sparse (resulting in gaps).
Anecdotal evidence gathered from experimentation indicates
that the optimised coverage skeletons rarely envelop a surface
point more than two times. Hence the recommendation is to
select a mesh resolution that allows for the uncovered and
overlap rate to play out to be nearly equivalent. As both un-
covered and overlap rates are monotonic with respect to mesh
resolution (i.e., increasing mesh resolution leads to denser
coverage skeleton, lower uncovered rate, and higher overlap
rate), the most appropriate resolution can be determined in
practice by considering these two rates after a few trials.

Step 2: Coverage Skeleton Construction

Edge Subdivision. See Fig. 4 for a visual illustration of the
edge subdivision process. Given any n-edge facet I, denoting
its vertices as vy, --- ,v, in cyclic order, the subdivision of
F} is a set of n quadrilaterals, constructed in a specific way:
Denote the barycentre of facet as b and the midpoint of edge
connecting v; and v; 41 as m;, the facet is divided by curves
that connect b; and vy,--- ,v,, where for convex facets the
curves can be straight line segments. The i-th sub-facet is
defined as the quadrilateral:

[bj,mi, vig1,mig1],i =1, ,n (D

where the indices are in cyclic order, hence v,,41 = v; and
Mp4+1 = my. And the bracket -] means that the quadrilaterals
have the same orientation as F};. By the subdivision process,
each edge of the original mesh is divided into two sub-edges.
It should be noted that valid edge subdivision processes are
not unique.

Coverage Skeleton Generation. This module aims to
non-repetitively visit all sub-facets of the refined mesh. Two
adjacent facets I (with n; edges) and I (with n; edges) are
taken here as an example.

path deformation

resulting path

Fig. 5. Flowchart of the proposed non-revisiting uniform coverage solution by
edge subdivision. The NUC of the original mesh does not exist. However, the
NUC of its subdivision always exists and can be obtained by path deformation.

First, the set of adjacent facets of each facet F; is collected
as A; in counter-clockwise order. Hence the index of F; in A;
and the index of F; in A; are known, denoted as locl and loc2
respectively. Then, the set of sub-facets of all facets following
the sub-division steps shown above have been collected as

Fy ={Fi(1), -, Fi(n)}

Fy ={F;(1),---, Fj(n;)}
where the connectivity between F; and F) is now replaced
by the adjacency of two pairs of sub-facets {F}(locl —
1), Fj(loc2)} and {F;(locl), Fj(loc2 — 1)}. Here all indices
are referred cyclically, as such F;(0) and F}(0) are actually
Fy(n;) and Fj(n;), respectively.

Then, starting from an initial trivial path R=Fy, adjacent
facets are incrementally incorporated into the path by contin-
uous path deformation. Let facet 7+ have been covered, and
the indices locl and loc2 are defined the same as before. The
cyclic order of I:—'j is adjusted such that it starts from loc2 and
ends at loc2 — 1,

[F5(1), -+, Fj(loc2 — 1), Fj(loc2), - -+ , F(n;)]

2

. . . . 3)
~+[Fj(loc2),- -, Fj(nj), F;(1),--- , Fj(loc2 — 1)] (
and insert it between Fj(locl — 1) and Fj(locl) in R,
[R(1),--- , Fi(locl — 1), Fy(locl), - , R(end)]
~[R(1 . ,F‘i locl — 1),
[R(1), - Eilloct ~ 1) “

-, Fj(end), Fj(1), -+, Fj(loc2 — 1),

Fj(locl),- -, R(end)]
Finally, the tool motion is constructed by collecting the centres
of sub-facets in R in order. A step-by-step illustration of the
construction of the NUC resulting path is shown in Fig. 5.
Differing strategies in selecting the next adjacent facet to be
incorporated will lead to distinct coverage skeletons which
will have slightly different coverage performances, whilst
guaranteeing coverage of all sub-facets. In this work, the
skeleton is consistently generated by manipulating the first
facet in the list of uncovered adjacent facets.

Theorem 1. Any mesh, after being edge sub-divided once,
must admit a coverage skeleton that enables non-repetitive
and full coverage of all sub-facets, provided that the facet
containing the starting sub-facet and the ending sub-facet is
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Fig. 6. Local stochastic optimisation.

chosen such that other facets still form a connected mesh. (A
simple counterexample is provided in Fig. 7. )

Proof. Since the sub-facet sequence will not expand into a
facet that has been visited, non-repetitiveness is guaranteed.
Hence only the full coverage property needs proof. It is proven
by contradiction.

Assume that a facet is left uncovered after Step 2 has
finished, whose index is j. Since the mesh is connected, the
uncovered facet must be adjacent to some covered facets.
Let the covered facet that facet j is adjacent be indexed
as 7. Then, they have satisfied the conditions of the above-
mentioned path deformation process. Thus a contradiction has
been reached because the coverage skeleton generation process
has not yet finished: the path that covers facet ¢ can still be
further deformed to cover facet j. O

Theorem 2. The coverage skeleton generation is of linear
complexity.

Proof. Assumptions. We assume the most commonly used
setting, whereby the unstructured mesh is stored as a facet-
vertex mesh, and for simplicity the mesh is assumed triangular.

Facet Adjacency. To determine the adjacency between
facets, the adjacency matrix A is leveraged. Let A be a full-
zero matrix at the beginning. The entry A(i,j) is set to k
if facet k has vertex ¢ and j in order. After processing all
ordered pairs of vertices from the facet list, facet A(4, j) and
A(j,%) (for any arbitrary ¢ and j) are identified as adjacent
facets, provided that they are both non-zero. This process is
performed in linear time complexity.

Coverage Skeleton Generation. The coverage skeleton is
generated by managing uncovered facets using a stack. When
facet ¢ is newly covered, its adjacent facets—say 7, k,[—are
pushed into the stack with the adjacency to ¢, in the form
of (i,7), (¢,k), and (4,1). In the next iteration, an element is
popped from the stack. If the facet has already been covered,
facets are continuously popped until an uncovered facet is
encountered, when continuous path deformation is applied to
cover it. Since each facet is manipulated only once during the
iterative loop, the process is also linear in time complexity, [

Step 3: Stochastic Optimisation

After the coverage skeleton is generated in the refined
mesh, each waypoint is replaced by the closet surface point,
thus mapping the coverage skeleton back onto the original
surface. In this way, the coverage skeleton becomes the

Fig. 8.
different discretisation resolutions.

Coverage skeleton generated on the Stanford bunny mesh with

germinal uniform coverage motion on the surface. The path
is further optimised by taking advantage of the parametric
representation of the surface (a spline surface is used in
this work), whereby each waypoint is randomly adjusted in
the direction perpendicular to the path. Given the coverage
path to be optimised, a tool waypoint is randomly selected,
and a random orientation in the U-V coordinate is chosen
for the movement of the waypoint, along with a random
movement distance (limited to a maximum of 0.1 times the
tool size to ensure that the optimisation is local). If the
coverage performance is improved by the revised waypoint
locale, the modification is accepted. Otherwise, it is discarded.
This stochastic optimisation does not fundamentally affect
the global layout provided by the initial coverage skeleton,
with the overall path length remaining akin. See Fig. 6 for
illustration. The stochastic optimisation process loops in an
any-time manner, improving or remaining as is at each step.

V. SIMULATED AND REAL-WORLD EXPERIMENTS

The proposed algorithm has been tested on a range of bench-
mark 3D surfaces—a saddle surface with varying curvatures,
the Standford bunny, and a wok on a real experiment. Some
preliminary definitions of the metrics used in the experimental
comparisons are first provided. A supplementary video with
further details of the simulations and a real-world implemen-
tation of a coverage task with a robotic manipulator is also
supplied here: https://github.com/ZJUTong Yang/NUC

A. Experimental Settings

Tool Contact Model. An equivalent tool-surface contact
model to [27], briefly re-stated here, is adopted for this work.
See Fig. 10. The target surface curvature is assumed not
inordinately steep with respect to the tool radius, so that
the contact area can be represented as a simply-connected
region. The tool position is a point on the surface, and the
tool orientation is perpendicular to the surface tangent plane.
The maximal allowable intrusion distance of the tool to the
surface is set as d. The constraint that the coverable region
for a given tool pose is approximated by an ellipse, parabola,
or hyperbola [27] is relaxed in this work, expanding to a target
surface of non-constant curvature anywhere.



Fig. 9. Coverage skeleton on a turbine (left) and a gearbox object (right).

TABLE I
NUC PERFORMANCE ON TESTING OBJECTS

Object [ Facets [ Re-meshing! [ Subdivision [ CPP
Bunny (sparse) 1760 3.25s 72.78ms 57.00ms
Bunny (middle) 4934 3.23s 277.20ms 276.70ms
Bunny (dense) 12475 6.88s 958.34ms 1.21s

Turbine 17977 55.09s 1.61s 2.23s

Gearbox 21301 43.95s 2.05s 3.14s

1 Re-meshing step carried out prior in Meshlab [32].

Coverage Rate Calculation. To calculate precise coverage
rates, a sampling-based approach has been adopted: For each
algorithm, the resultant path is represented by a sequence of
dense waypoints (>2000 in this work). A large number of
uniformly distributed surface sample points (10* in this work)
are collected by rejection sampling. The set of tool poses’
indices that can cover each surface sample point is then com-
puted. An empty set denotes an uncovered surface point, whilst
a continuous sequence of indices denotes a non-repetitively
covered surface point. If the set forms n continuous sequences
of indices, the surface point is identified as repetitively covered
n times. The rates of uncovered (U.Rate), covered (C.Rate),
and repetitively covered surface points (O.Rate) are estimated
as the proportion of their respective sets.

Performance Metrics. To evaluate how repetitively the
surface points are covered, a weighted Cost of each coverage
motion is proposed: Let there be /N surface points, and the
i-th point is covered by n; times, then

[ — 1
Costzzli %)
i=1 N

Using this weighted cost, a point being repetitively covered
two times weighs the same as a point being uncovered, and a
point being repetitively covered by n(> 1) times weighs the
same as (n — 1) points being uncovered.

B. Coverage Skeleton Complexity

The coverage skeleton has been applied to arbitrary meshes
to examine the computational time of the coverage skeleton
generation phase. Five different meshes are utilised for the test,
including the Standford bunny’s surface with three different
resolutions, a turbine object, and a gearbox object, as shown in
Fig. 8 and Fig. 9. The number of facets in the meshes and the
computational time for re-meshing, sub-division, and coverage
skeleton generation (CPP) are listed in Table. I. These results
indicate that the computational bottleneck for the proposed
NUC scheme is strongly associated to the re-meshing step,
whilst the proposed algorithm runs efficiently in comparison.

a circle in the tangent plane of

/4 P

the covered area ™

side view

Fig. 10. Illustration of the covered surface area of a given tool pose. Given
the tool-surface contact point denoted as p where the tangent vectors are p,,
and p., the projection of a surface point ¢ onto the tangent plane is assumed
as q’. q can be covered only if the distance between g and ¢’ is less than d,
and the distance between ¢’ to p is less than r, the tool radius. Here d and
r are given thresholds.

N

(b) Middle Saddle Surface

N
(c) Steep Saddle Surface

Fig. 11. Coverage of three different saddle surfaces using different coverage
algorithms. From left to right: boustrophedon motion, spiral motion, [27]
and the proposed algorithm. Uncovered surface points are marked in blue.
Points with perfect coverage (being covered for exactly one time) are hidden.
Revisited points are shown in other colours.

C. Comparisons on Saddle Surfaces

The performance of the algorithm is compared in detail with
various coverage path planning algorithms by extensive testing
on a classic non-planar object, a saddle-shaped surface. See
Fig. V-B for illustration and Table. II for the related statistics.

Performance of Boustrophedon Motion. The boustrophe-
don coverage motion has been designed on the curvilinear
coordinate of a spline surface. Given the shape of the tool,
the number of back-and-forth motions in the boustrophedon
coverage has been carefully set such that repetitive coverage
is avoided at the centre of the saddle surface. Although the
paths are uniform in the parametric curvilinear coordinates,
they end up non-uniformly laid on the surface. Moreover, the
sharp turnings during the motion cause repetitive coverage.
The performance of the boustrophedon motion is clearly not



Fig. 12. A benchmark example using the Stanford bunny: from an initial point
cloud representation (top left), a parameterised B-spline surface is obtained
(top right). The closed curve in U-V coordinates (bottom left) captures the
internal sub-region of interest from the data. The resulting trimmed parametric
surface is shown on the bottom right.

T TR,
(a) boustrophedon

(b) spiral (c) ours
Fig. 13. Coverage of the frontal part of the Stanford bunny.

competitive against other algorithms.

Performance of Spiral Motion. Following the same vein,
the spiral motion is also designed on the surfaces. The number
of cycles in the spiral motion has been chosen such that
repetitive coverage is avoided, which however leads to large
areas being uncovered. The coverage rate of the spiral motion
for the flat, middle, and steep saddle surfaces are 72.47%,
61.33%, and 55.10%, respectively.

Performance of [27]. As per our analysis, the uneven
surface is intrinsically not a rectangular region, thus the
boustrophedon motion must revisit or miss some parts on the
surface, no matter how it is deformed. Now that [27] prefers
non-revisiting coverage at the beginning part of the motion,
severe overlaps have to appear at the final segment of the
motion. See Fig. V-B for illustration. With the surface being
increasingly curved, although a large proportion of the surface
(except the final segment of the coverage motion) is still
covered perfectly, there exist surface points that are covered
for 3, 6, and 10 times, respectively, resulting in deteriorating
Cost performance (0.067, 0.109, and 0.165, respectively).

Performance of Ours. Using the proposed algorithm,
the surface is re-meshed into an unstructured mesh with
appropriate resolution as per the description in Section IV Step
1, where the coverage skeleton is generated. Stochastic optimi-
sation is then adopted to optimise the coverage performance.
See Fig. V-B for the illustrations of the proposed algorithm.
Results show that the proposed algorithm establishes the
highest coverage (single) rate among all existing algorithms in
all testing cases, and also obtains the best performance under

TABLE II
PERFORMANCE OF VARIOUS COVERAGE PATHS
Methods [ Surface [ U. Rate | C. Rate [ O. Rate [Max. [Cost | L. [ T.

boust. 14.56% | 80.94% | 4.50% 3 0.192 | 140.15 | 51.24
spiral SE 2538% | 72.47% | 2.15% 2 0.275 | 126.55 | 54.60
[27] 0.01% | 94.70% | 5.29% 3 0.067 | 178.73 | 285.46
ours 3.99% |95.81% | 0.20% 2 0.042 | 134.60 | 185.97
boust. 23.44% | 73.39% | 3.17% 3 0.267 | 185.40 | 58.43
spiral SM 37.51% | 61.33% | 1.16% 2 0.387 | 158.69 | 58.20
[27] 0.18% | 94.36% | 5.46% 6 0.109 | 285.49 | 411.48
ours 3.97% |95.90% | 0.13% 2 0.041 | 197.63 | 290.85
boust. 28.28% | 68.67% | 3.50% 3 0.313 | 239.28 | 61.95
spiral ss 44.17% | 55.10% | 0.82% 2 0.450 | 198.14 | 59.62
[27] 0.23% | 92.82% | 6.95% 10 | 0.165 [ 428.62 | 528.64
ours 5.15% |94.52% | 0.33% 2 0.055 | 272.80 | 420.65
boust 29.27% | 68.16% | 2.57% 3 0.319 | 385.74 | 293.34
spiral FB 34.18% | 63.50% | 2.32% 3 0.365 | 357.41 | 506.93
ours 11.59% | 82.69% | 5.72% 3 0.174 | 492.98 | 829.06

SF: saddle(flat), SM: saddle(middle), SS: saddle(steep), FB: frontal bunny

U. Rate: Uncovered rate, C. Rate: Covered(single) rate, O. Rate: Overlapped rate
Max. : The maximum number of visiting of a surface point

L.: Coverage path length (unit: cm)

T.: The sum of 3D orientation turnings of the tool trajectory (unit: rad)

Fig. 14. Illustration of the real-world experiment. (a) The simulated manipu-
lator scene. (b) The coloured topological graph generated by [14]. (c) Video
stills of each continuous coverage motion segment.

the weighted C'ost metric.

D. Comparisons on Bunny Surface

The algorithms are also applied to the Stanford bunny’s
frontal surface. A trimmed B-spline surface is fitted to
the bunny’s mesh using Point Cloud Library (PCL) [33].
See Fig. 12 for illustration. The parametric subregion that
the trimmed surface occupies is concave, hence Wen’s
method [27] is not applicable. See Fig. 13 for the illustrations
of the boustrophedon motion, spiral motion, and the proposed
algorithm on the bunny’s frontal surface. Quantified results
are also collected in Table. II. Results show that the proposed
algorithm obtains the least uncovered rate, the highest covered
(single) rate, and the best C'ost metric.

E. Real World Experiments

A real-world NUC task is illustrated to show the proposed
algorithm in action on a real robot, motivated by the inspection
of a cooking utensil (a wok) with a robot arm (a fixed-
based URS). Extracts are depicted in Fig. 14. The tool’s
locations are set above the surface by 2cm, with end effector



poses constrained to remain perpendicular to the surface’s
tangent plane at all times. As such, the tool poses are five
dimensional, since the tool can rotate freely around the normal
vector of the surface. Thus, in the experiments we lock the
last joint in the URS, so that the coverage problem remains
within a non-redundant setting. The kinematics of the URS
satisfies the Pieper solubility condition, which allows us to
calculate analytically all possible inverse kinematic config-
urations. Due to the non-linear manipulator kinematics and
collision avoidance, a simple spiral motion generated on the
wok surface can not be continuously tracked. Thus, a cellular
decomposition algorithm [14] has been used to decompose the
surface into three sub-regions (Fig. 14(b)), each of which is
proven to be continuously coverable by the manipulator (some
representative configurations are shown in Fig. 14(c)). The
NUC solution was then generated by the proposed algorithm in
each sub-region. Two reconfiguration motions are required to
concatenate the three coverage motion segments into a single
one, which is accomplished with an RRT planner. The joint-
space coverage path is interpolated cubically into a smooth and
constant-speed trajectory and executed by a controllers (C++
in ROS). The reader is referred to the supplementary video
for the full motion including manipulator reconfigurations.

VI. CONCLUSION

A novel construction for the coverage planning of any given
non-planar surface has been proposed in this work. The non-
revisiting uniform coverage (NUC) path of the surface is
equivalent to visiting a set of non-repeated, uniformly sampled
waypoints which must be unstructurally laid on the surface.
This research has considered the coverage path generation by
letting a coverage skeleton be constructed from an unstructured
mesh which uniformly represents the target surface area.
The existence of a coverage skeleton on the edge-subdivided
polygonal mesh of any arbitrarily-shaped object surface has
been proven, and a practical algorithm has been proposed to
find a valid NUC resulting path. This makes the proposed
scheme prominently applicable in coverage tasks under non-
linear manipulator constraints. Extensive illustrations and a
real-world implementation of a manipulator coverage task have
been presented to show the validity of the proposed algorithm.
These have been supplemented by a detailed video and an open
source implementation in C++ for the benefit of the research
community.
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