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Abstract—This manuscript presents a sophisticated robotic
system that incorporates an adaptive optimization algorithm
specifically designed for brachytherapy in the treatment of
prostate cancer. The central innovation of this system lies
in the algorithm itself, which is crafted to dynamically alter
needle paths based on the real-time movements of the prostate
gland during the local procedure. The algorithm utilizes real-
time positional information derived from Magnetic Resonance
Imaging (MRI) to guarantee precise localization of the prostate,
adapting to its continual motion and deformation. This level of
accuracy is of paramount importance in brachytherapy, as the
precise positioning of radioactive seeds directly influences the
effectiveness of the therapy and reduces harm to nearby healthy
tissues.

Our findings demonstrate a noticeable enhancement in the
precision of radiation seed placement, leading to a more efficient
delivery of radiation. Additionally, the adaptive characteristics of
the algorithm notably decrease the frequency of needle insertions,
resulting in a less invasive treatment process for patients. This
reduction in the number of needle insertions also contributes
to a reduction in the risk of infection and a shorter recovery
period. This innovative robotic system, which is complemented
by the adaptive optimisation algorithm, enhances the coverage
of targeted areas achieved through a conventional combinatorial
approach by approximately 12% while requiring fewer needles.

Index Terms—Medical robot, Adaptive Optimisation, Predic-
tion, Path planning, Magnetic resonance imaging

I. INTRODUCTION

Prostate cancer, the most common malignancy in men,
generally requires treatments such as surgery, external radio-
therapy, or brachytherapy (BT), all of which are approved by
the High Authorities for Health (HAH). These treatments are
implemented through a multidisciplinary approach involving
urologists and radiation oncologists, with the patient making
the ultimate decision. Surgery involves removing the entire
prostate, whereas external radiotherapy delivers a dose of
70Gy (Gray) across 35 sessions using a particle accelerator.
Brachytherapy, which is less invasive for the patient, aims
to irradiate the target area with either low-dose (LDR) or
high-dose (HDR) ionizing radiation, typically guided by trans-
rectal ultrasound (TRUS). Known as TRUS-BT, this method
has been the standard for directing brachytherapy procedures.
However, several inherent issues arise with this technique, the
rigid grid used in TRUS-BT restricts insertion angles, and
prostate movement during the procedure can cause incorrect
seed placement [1]. Additionally, TRUS may not clearly
distinguish cancerous tissue, impacting the precision of seed
placement [2].

To mitigate these limitations, robotic systems have been de-
veloped, including those that replicate manual procedures and

grid-free robots that provide increased flexibility and accuracy
in seed placement [2], [3]. The needle insertion process in
brachytherapy or biopsy [4] is vital for the success of the
treatment and the patient’s overall experience. Key objectives
for optimizing this procedure include reducing surgery time,
minimizing needle adjustments, improving seed placement
accuracy, decreasing radiation exposure, and enhancing patient
comfort.

Given these considerations, in this paper:

• We present a novel algorithmic approach that enhances
the robot’s efficiency in MRI-guided prostate.

• We provide a comprehensive comparison of our approach
with existing methodologies, highlighting its performance
in terms of accuracy and efficiency.

• Through extensive simulations and real-world tests, we
demonstrate the practical applicability and benefits of our
approach.

II. MR-ROBOT FOR PROSTATE INTERVENTION

The CoBra robot is a 5-DoF parallel robot for minimally
invasive procedures. It uses five linear actuators powered
by MRI-compatible piezo-sonic motors with high precision.
Absolute encoders ensure reliable position control, critical
for preventing procedure interruptions due to power failures.
The robot operates within a 3T MRI scanner, guiding needles
transperineally while providing real-time visualization through
an MR-safe camera, as depicted in Fig. 3. This setup allows
for optimal oblique needle insertions, reducing patient trauma
and improving procedural efficiency.

Fig. 2. Overview of the CoBra 5-DoF Parallel Robot

III. COBRA ROBOT KINEMATICS

This section develop the CoBra robot Inverse Kinematic
Model (IKM), is a nonlinear function fIKM , allowing to
describe the position of the finite target points (needle tip or
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(a) MR image of
the Prostate organ
taken in lithotomy
position

(b) Prostate 3D
model

(c) Illustration of Prostate
movements (each color is

a new position)

(d) Illustration of
Prostate

Inflammation

(e) Illustration
of Prostate
deformation

Fig. 1. Prostate Motions and Movements Illustrations

Fig. 3. The CoBra system includes a 5-DoF parallel robot for needle guidance,
a BT module, an MRI scanner, and an MR camera. The sedated patient
(an animal) is positioned in lithotomy. The system allows tele-operation via
a joystick from the control room, using the MRI console and a graphical
interface.

Tool Centre Point - TCP) (xt, yt, zt) to the 5 joint positions
of the robot (Lf1 , Lf2 , Lr1 , Lr2 , Lg) , as follows:

[Lf1, Lf2, Lr1, Lr2, Lg] = fIKM (xt, yt, zt) (1)

Fig. 4. CoBra Robot kinematics

The target point can be reached with various needle ori-
entations. The input grid prevents needle bending but limits
the needle’s movement, reducing possible paths to the target.
The kinematic model must control the needle tip and verify
its accessibility within these constraints.

Let a target point be defined by the transformation matrix
t
bT expressed in the base frame ℜb{xb, yb, zb} of the robot
(Fig. 4).

t
bT =


u1 v1 w1 xt

u2 v2 w2 yt
u3 v3 w3 zt
0 0 0 1

 (2)

Knowing the desired entry point and target point, it is
therefore possible to determine the directional vectors. u, v
and w of the reference frame attached to the point Mf along
the direction MrMf . Based on the coordinates of the entry
point {xe, ye, ze} and the target point {xt, yt, zt} , the vector
w can be obtained as follows:

w =
[xt − xe , yt − ye , zt − ze]

T√
(xt − xe)

2
+ (yt − ye)

2
+ (zt − ze)

2
(3)

The vector u is normal to the vector w and is parallel to
the plane ZX

u =
[w(3) , 0 , − w(1)]

T√
(w(3))

2
+ (−w(1))

2
(4)

The vector v is perpendicular to the plane formed by the
vectors u and w

v = w ∧ u (5)

The rotation matrix of the matrix t
baseT can thus be ob-

tained. The constraint of the input grid makes the needle less
flexible as it applies a supporting force, so we can assume
that the needle can be considered as a rigid tube. Thus, we
can relate the coordinates of the needle tip to the point Mf of
the CoBra guide robot, knowing the dimensions of the needle.

t
bT = Mf

b TMm
Mf T t

MmT

Mf
b T = t

bT (
t
MmT )

−1
(
Mm
Mf T

)−1 (6)
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The value of Lg can therefore be deduced

Lg =
g + g0 − Mf

b T (3, 4))
Mf
b T (3, 3)

(7)

Where g and g0 are the geometric parameters of the robot.
Given the value of Lg , it is therefore possible to obtain the
transformation matrix

Mr
b T =Mf

b TMr
Mf T (Lg) (8)

From the transformation matrix Mr
b T and Mf

b T represent the
transformation matrix of the points Mr and Mf , respectively,
relative to the base frame of the robot, the values of the joint
positions Lf1, Lf2, Lr1 and Lr2 can be deduced .

Lf1 = Mf
b T (1, 4)− d1.cos(α1)− i1;

Lf2 = Lf1 + c1.cos(α1) + e1.cos(β1)
(9)

Where :
α1 = arcsin

(Mf
b T (2,4)−(a1+b1/2 +f1)

d1

)
and

β1 =
(

a1+b1+c1. sin(α1)
e1

)
The same applies to the rear part of the robot :

Lr1 = Mr
b T (1, 4)− d2.cos(α2)− i2;

Lr2 = Lr1 + c2.cos(α2) + e2.cos(β2)
(10)

Where :
α2 = arcsin

(
Mr
b T (2,4)−(a2+b2/2 +f2)

d2

)
and

β2 =
(

a2+b2+c2. sin(α)
e2

)
a1, a2,b1,b2,c1, c2,e1,e2,f1,f2,i1 and i2 represent the geo-

metric parameters of the robot, as illustrated in Fig. 4.

IV. ADAPTATIVE CONTROL SYSTEM OF NEEDLE PATH
PLANNING

In this study we will focus on the adaptive control system
part in Fig. 5.(a) for needle path planning represents a sub-
system within a larger therapeutic framework. This system is
responsible for the real-time adjustment of needle trajectories
during brachytherapy, ensuring high precision in targeting and
treatment delivery. The aspects related to the instrumentation
Fig. 5.(d), modelling Fig. 5.(b), and control Fig. 5.(c) of the
Cobra robot have been the subject of further developments and
previous studies [1], [5], [6].

This subsystem comprises two main components:
• AI-based Prediction Model: This model analyzes real-

time organ motion from MRI data (see Fig. 1) to forecast
the prostate’s movement, allowing for proactive adjust-
ments to the needle path.

• Adaptive Optimization: Using the predictive model’s
output, this module calculates optimal needle insertion
points, ensuring efficient cancerous area coverage while
minimizing tissue damage and the number of insertions.

This section involves the adaptive control system’s role
within the complex network of processes and technologies
involved in it, highlighting its critical function in enhancing
treatment outcomes.

A. Study Hypotheses

This study is guided by key hypotheses for developing the
predictive model and optimization framework:

1) Prostate Motion: The prostate is assumed to un-
dergo only translational and rotational movements dur-
ing brachytherapy, focusing on six degrees of freedom
(translation and rotation along x, y, z axes) without
considering deformation.

2) Needle Interaction: The needle’s influence on prostate
motion is assumed minimal:

∆p ≈ 0, ∆θ ≈ 0 (11)

where ∆p is the change in the prostate’s position vector
and ∆θ is the change in orientation vector due to needle
insertion.

These hypotheses simplify the problem space, aiding the
design of the adaptive optimization algorithm and AI-based
predictive model to enhance brachytherapy precision and effi-
cacy.

B. Prostate Motion AI-based Prediction Model

In prostate cancer brachytherapy, the Prostate Motion AI-
based Prediction Model focuses on translational movements,
ignoring deformations. Advanced time series forecasting mod-
els are essential for accurate organ movement tracking dur-
ing procedures. Convolutional Neural Networks (CNNs) de-
tect spatial patterns [7], [8], while Long Short-Term Mem-
ory (LSTM) networks capture extended sequences [9], [10].
Graph-based models manage topological data [11]–[13], and
hypergraph models handle complex relationships, useful in
various domains [14].

Dynamic MRI techniques enable real-time motion tracking,
addressing motion artifacts [15]–[18]. Deep learning models
enhance motion prediction in healthcare, promising better
diagnostic accuracy [19], [20]. The model uses real motion
data from 162 patients over five sessions [21] to capture the
stochastic nature of prostate movement during therapy.

The chosen architecture is a CNN-LSTM model (Fig. 6),
combining CNNs for spatial feature extraction from MRI
sequences and LSTMs for temporal pattern recognition. CNNs
identify spatial patterns, while LSTMs capture long-term de-
pendencies in sequential data [22]. The spatial-temporal data,
Xt, represents the 3D position and orientation of the prostate’s
center of gravity at time t. Accurate tracking is crucial in
precision medicine, especially in brachytherapy, to optimize
radiation dose delivery and minimize damage to healthy tissues
[23]. Recent advancements in deep learning improve real-
time image-guided therapies for prostate cancer, enhancing
treatment outcomes [24].

The predictive model is formally expressed as:

Pt+1 = CNN-LSTM(Pt, Pt−1, . . . , Pt−n) (12)

The training process involves the minimization of the Mean
Squared Error (MSE) between the predicted and actual posi-
tions and orientations of the prostate’s center of gravity:
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Fig. 5. Block diagram of the autonomous control of needle insertion by the CoBra robot, featuring an AI-based prediction model for adaptive target tracking,
accommodating anatomical changes in the prostate. The control architecture consists of four main parts: adaptive needle control, NI-CompactRIO real-time
system, actuator controllers, and MRI-based CoBra robot.

Fig. 6. CNN-LSTM Motion Prediction Model

minMSE =
1

N

N∑
i=1

(X
(i)
t+1 − X̂

(i)
t+1)

2 (13)

where X̂
(i)
t+1 represents the predicted position and orienta-

tion, and X
(i)
t+1 represents the true position and orientation at

time t+ 1. This optimization criterion ensures that the model
provides the most accurate real-time predictions of prostate
motion, which are critical for adjusting the needle trajectory
during the brachytherapy procedure, thereby enhancing the
precision and safety of the treatment.

C. Path Planning Adaptive Optimisation

Conventional biopsy and brachytherapy methods use a grid
system for parallel needle insertions, requiring multiple inser-
tions to cover the prostate. This method doesn’t account for
prostate movement. The MPEP approach [25] reduces inser-
tions while optimizing tumor targeting. The CoBra template
grid (CTG) guides needle paths at various angles, adapting to
prostate motion for better targeting.

This research extends MPEP by incorporating dynamic
prostate positioning to improve adaptive optimization. The
goal is to reduce needle insertions while maintaining precise
targeting, considering prostate movement (Fig. 7). Mathemat-
ically, let If be a set of N target points Pf , and Ie a set of Ne

entry points Pe. A treatment requires N paths PePf such that
Pf ∈ If and Pe ∈ Ie, with efficient paths minimizing entry
points and robot travel distance.

The adaptive control module, shown in green in Fig. 5,
is based on an AI-driven prediction model that uses real-
time MRI data. This model predicts the future position of the

prostate Pfuture based on current and past observed positions
Pcurrent and Ppast:

P t+1
f = f(P t−k,...,t

f ) (14)

Given a set of target points {Pf1 , Pf2 , ..., Pfn} and a set of
entry points {Pe1 , Pe2 , ..., Pem}, the cost function is defined
as:

minC = αR+ βD + λE (15)

where:

• R represents the total distance between each entry point
and its corresponding target point. For each path i from
an entry point Pei to a target point Pfi , the distance di
is calculated. The total distance is L:

R =

N∑
i=1

d(Pei , Pfi) (16)

• D is the sum of deviations from the predicted target
positions. For a predicted target position P̂fi and the ac-
tual target position Pfi , the deviation δi is the difference
between them. D is the total of all such deviations:

D =

N∑
i=1

||P̂fi − Pfi || (17)

• E is the count of entry points used in the procedure. If
an entry point Pej is utilized for any target point Pfi , it
is counted:

E = |{Pej : ∃Pfi such that Pej is used to reach Pfi}|
(18)

Algorithm 1 shows the steps for the adaptive optimisation
procedure
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Algorithm 1 Dynamic Entry Point Selection
1: procedure ENTRYPOINTSELECTION(V, E, reachabil-

ity predictor)
2: Create initial mapping of Pe → Pf

3: Select first Pei based on initial mapping
4: Place seed at selected Pei

5: Get updated reachability predictions from
reachability predictor for remaining Pe − {Pei}
given current placements

6: Update mapping of Pe → P̂f

7: Pf = Pf − {Pfi |Pfi is reachable byPei}
8: while Pf ̸= ϕ do
9: Select next best Pei using updated mapping

10: Place seed at selected Pei

11: Get updated predictions for remaining Pf

12: Update mapping of Pe → P̂f

13: Pf = Pf − {Pfi |Pfi is reachable byPei}
14: end while
15: end procedure

Fig. 7. Optimization Problem: Blue points indicate the grid’s entry points on
the perineal skin, while orange points denote target tumors in the prostate.
Each needle path (green) is defined by a target point and an entry point.

V. EXPERIMENTAL RESULTS

A. Dataset and Hardware Environment

a) Dataset: The dataset for training the Prostate Motion
AI-based Prediction Model comprises motion data collected
from 162 patients undergoing radiotherapy. Each patient’s
prostate motion was recorded over five (or six) sessions,
resulting in a comprehensive dataset that captures a wide array
of movement patterns. The recorded data specifically includes
the 3D position and orientation of the prostate’s center of
gravity (See Fig. 8, providing the spatial-temporal sequences
necessary for the predictive modeling.

b) Hardware Environment: The training and develop-
ment of the CNN-LSTM model were conducted on a personal
laptop. The hardware environmentis equipped with an AMD
Ryzen 7 7745HX processor, 32GB of RAM, and an NVIDIA
RTX 4070 graphics card. The NVIDIA RTX 4070 is outfitted
with tensor cores optimized for AI tasks and supports CUDA
program workloads.

This robust hardware setup ensures that the CNN-LSTM
model can be trained efficiently, with the GPU acceleration

Fig. 8. Patient 1 X,Y,Z Movements during Session 2

being particularly critical for handling the computationally
intensive tasks involved in training deep learning models.

B. Training and Validation Performance

The model’s performance was evaluated using Mean
Squared Error (MSE) as the loss function, quantifying the av-
erage squared difference between estimated and actual values.
During training, the model achieved a best MSE of approx-
imately 1.44mm2, indicating high accuracy in predicting the
prostate’s center of gravity.

Fig. 9. Training and Validation MSE of the CNN-LSTM Model

Fig. 9 shows the model’s learning curve, with the x-axis
representing epochs and the y-axis representing MSE. The
plot displays decreasing MSE trends for both training and
validation datasets as epochs increase.

C. Adaptive Optimisation Result

The model’s performance, evaluated using Mean Squared
Error (MSE), achieved a best MSE of approximately
1.44mm2, indicating high accuracy in predicting the prostate’s
center of gravity.

Fig. 9 shows the learning curve, with MSE decreasing as
epochs increase for both training and validation datasets.

The adaptive optimization algorithm was compared to the
static approach across ten procedures (Fig. 10). The dynamic
method reduced the average number of needles from 7.8 to 7.3
and increased coverage from 80.28% to 96.4%, demonstrating
a 12.72% improvement.
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Fig. 10. Performance Comparison Between Static and Adaptive Approaches

In summary, the adaptive optimization approach is more
efficient and effective than the static method, ensuring optimal
needle usage and excellent coverage for brachytherapy. Future
work will expand this approach to other procedures and refine
the algorithm for better decision-making.

VI. CONCLUSION AND FUTURE WORK

This work presents a dynamic optimisation approach for
needle path planning in prostate brachytherapy, leveraging
real-time MRI data and advanced predictive modelling. The
adaptive method significantly reduces needle usage and en-
hances procedural efficiency, outperforming traditional static
methods. Despite the computational demand, the integration
of AI prediction algorithms with robotic kinematics allows
for real-time adjustments, improving surgical precision and
resource utilisation.

The model’s assumptions, such as focusing only on trans-
lational and rotational movements and neglecting the needle’s
impact on prostate movement, need further evaluation. Future
work should refine the optimization algorithm, expand clinical
applications, and incorporate comprehensive predictive models
to enhance treatment effectiveness. This approach advances
brachytherapy and other precision-critical medical procedures.
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