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Abstract— Autonomous mobile robots are used in a wide
range of industrial application. Dynamic window approach
(DWA) is one of effective local path planning methods consider-
ing collision avoidance and kinematic constraints. DWA selects
the optical path from path candidates from velocity space by us-
ing an evaluation function with fixed weight coefficients. These
fixed weight coefficients are designed for the specific environ-
mental situation. Therefore, if the environmental situation such
as congestion, road width, and obstacles changes, the evaluation
function with fixed weight coefficients may select the inefficient
path or path with the collision. To address this issue, this paper
proposes the dynamic weight coefficients based on Q-learning
for DWA considering environmental situations (DQDWA). Q-
learning is one of reinforcement learning methods. The Q-
table in DQDWA consists of states of robot and environmental
situations, and actions of weight coefficients in DWA evaluation
function. By using the learned Q-table, DQDWA dynamically
selects weight coefficients and, the optimal path considering
environmental situations is generated. The effectiveness of the
proposed method was confirmed through simulations.

I. INTRODUCTION

In recent years, the declining birthrate and aging popula-
tion have been considered to be a serious problem. Therefore,
workforce creation through autonomous mobile robots is
desired in various situations. To work in any environment,
robots are required to move the goal position while avoiding
obstacles. For the realization of such movement, autonomous
mobile technology should be developed. Autonomous mobile
technology consists of localization [1], mapping [2], percep-
tion [3], and path planning [4].

This paper focuses on path planning. Path planning is
divided into two parts; one is global path planning, and
the other is local path planning [5]. Global path planning
generates the subgoals from the start position to the goal
position. Local path planning generates the robot motion to
the subgoal considering collision avoidance in real-time.

This paper develops local path planning in static environ-
ments such as factories and warehouses. Dynamic window
approach (DWA) is widely used as the local path planning
method [6]. Many methods related to improving DWA have
been reported [7]–[9]. DWA generates path candidates from
robot velocity space considering collision avoidance and
kinematic constraints. The evaluation function selects the
optimal path from path candidates considering the goal
position, obstacle distance, and robot velocity. The optimal
path depends on the weight coefficients of the evaluation
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function. The fixed weight coefficients are suitable for a
specific situation. However, if the environment situation is
changed, the inefficient path or path with collision may be
selected.

To solve this problem, dynamic weight coefficients in
DWA have been developed [11], [12]. These methods ad-
justed weight coefficients in real-time by using fuzzy logic
with analysis of goal positions and obstacles. In addition,
dynamic weight coefficients with Q-learning was proposed
[13]. Q-learning is one of the reinforcement learning methods
[14]. This method improved the DWA evaluation functions
and adjusted the weight of each subfunction by using a
trained Q-learning agent.

For these features, we focus on the Q-learning method
to deal with the adjustment of weight coefficients. In the
conventional method [13], the area of the spaces and con-
gestion rate were not considered as environmental situations.
To address this issue, this paper proposes the dynamic
weight coefficients based on Q-learning for DWA consid-
ering environmental situations (DQDWA). DQDWA defines
environmental situations as goal distance, goal direction,
velocity, visible area, and congestion. DQDWA dynamically
adjusts the weight coefficients of the evaluation function for
environmental situations by using Q-learning.

This paper consists of seven sections including this one.
Section II shows the modeling of the mobile robot. DWA
and Q-learning are explained as the conventional methods in
Sections III and IV. Section V proposes DQDWA to address
the environmental change. In Sections VI, simulation results
are shown to confirm the usefulness of the proposed method.
Section VII concludes this paper.

II. COORDINATE SYSTEM

Fig. 1 shows the coordinate system of the robot. As shown
in Fig. 1, there are two coordinate systems; one is the
local coordinate system ΣLC , and the other is the global
coordinate system ΣGB . The superscript GB⃝ means the
value in ΣGB , and the variables in ΣLC do not use the
superscript. The origins in ΣGB and ΣLC are set as an
initial robot position and the center point of both wheels.
The direction of X-axis matches the forward direction of the
robot, and the direction of Y -axis is the vertical left of X-
axis. (GBx, GBy) and GBθ refer to the position and angle of
the robot in the global coordinate system. Lrob is the radius
of the robot.
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Fig. 1. Modeling of Robot

(a) VSD (b) Optimal Path of DWA
Fig. 2. Image of DWA

III. DYNAMIC WINDOW APPROACH (DWA)

Dynamic Window Approach (DWA) is one of the actual
local path planning methods [6]. Firstly, the velocity space
with dynamic constraints (VSD) is searched based on the
current velocities of the robot. The velocity space Dvsd as
shown in Fig. 2 (a) is defined as follows.

Dvsd = Dall ∩Ddw ∩Dobs (1)

where Dall and Ddw represents the velocity range deter-
mined from the robot specifications, and velocity range that
can be generated at the next time step. Dobs indicates the
velocity range without the collision.

Secondly, the optimal path is selected from the VSD
using an evaluation function at each time step. As shown
in Fig. 2 (b), the predicted trajectories are calculated from
the velocities in Dvsd as path candidates. By maximizing
evaluate function J , the optimal velocity pair which consists
of the translational and angular velocity is chosen from the
dynamic window.

J = W gol · cgol +W vel · cvel +W obs · cobs (2)

where cgol, cvel, and cobs represent distance between the
robot position and goal position, the current translational
velocity, and the distance from the robot to the nearest
obstacle, respectively. W gol,W vel and W obs are weighting
coefficients.

The details of the DWA are further elaborated in [6].

Fig. 3. Concept of Q-learning

Fig. 4. Overview of DQDWA

IV. Q-LEARNING

This section introduces Q-learning as one of the reinforce-
ment learning methods [14]. Fig. 3 shows the concept of
Q-learning. As shown in Fig. 3, there are three steps. In
Train1, the agent chooses the action a of the current state s.
The ϵ-greedy method with Q-table is used for a. In Train2,
the agent receives the next state and reward R from the
environment. In Train3, the Q-value in the Q-table is updated.

Q(s, a) = (1− α)Q(s, a) + α[R(s, a) + γQ(s′, a)] (3)

where α and γ are the learning rate and the discount rate.
R(s, a) and Q(s′, a) represent the reward of the agent and the
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(a) s1 (b) s2 (c) s3 (d) s4 (e) s5
Fig. 5. Image of State in Proposed Method

maximum Q-value in the next state. The Q-table is a m×n
matrix, where m and n are the numbers of actions. Trains1-3
are repeated until the Q-table converges to a threshold value.

V. PROPOSED METHOD (DQDWA)
This section proposes the dynamic weight coefficients of

the evaluation function for DWA considering environmental
situations (DQDWA). In the conventional method [13], the
area of the spaces and congestion rate were not considered
as environmental situations. Therefore, an inefficient path or
path with a collision may be selected, if the environmental
situation is changed. To address this issue, we define area
and congestion as environmental situations.

Fig. 4 shows the image of DQDWA. In Step1, the state s =
[s1 s2 s3 s4 s5]

T is calculated. Fig. 5 shows the image of s.
s1, s2, s3, s4 have 2 patterns and s5 has 4 patterns. Therefore,
the size of the state dimension is 64. Each definition of the
states is described.

s1 is the state related to the distance between the robot
position and the goal position. s1 is defined as follows.

s1 =

{
1 if lrg < W disLrob

2 otherwise (4)

where W dis is the weight coefficient of goal distance. lrg is
the distance between the robot position and the goal position.

s2 is the state to represent the angle difference between
the robot and the goal position. s2 is defined as follows.

s2 =

 1 if θrg ∈ [−
π

2
,
π

2
)

2 otherwise
(5)

where θrg is the angle between the robot and the goal
position.

s3 is the state related to the traveled distance between the
current position and the position after one second. Traveled
distance η is calculated as follows.

η =


2v
ω if |ω| > π
v else ifω = 0
2v
ω sin(ω2 ) otherwise

(6)

s3 is defined as follows.

s3 =

 1 if |η| ≤
V max

2
2 otherwise

(7)

where V max is the maximum translational velocity of the
robot.

s4 is the state to quantify the area of the space. For the
state s4, the divided area fi is defined as follows.

fi =
1

2
didi+1 sin(

2π

N
) (8)

where di is the i-th distance data measured by the distance
sensor. N is the number of distance data. Note that if i = N ,
d1 is used instead of di+1. d1 is the distance data directly in
front of the robot. From there, distance data is obtained in
2π

N
radian increments counter-clockwise. The summation of

the divided area fall is calculated as follows.

fall =

N∑
i=1

fi (9)

s4 is defined as follows.

s4 =

{
1 if fall ≤ W areFmax

2 otherwise (10)

where W are is the weight coefficient of the area. Fmax is
the maximum summation of the divided area.
s5 is the state related to the congestion. s5 is defined

according to the number of obstacles around the robot.

s5 =



1 if nfwd >
N

4

2 else if nbwd >
N

4

3 else if nall >
N

4
4 otherwise

(11)

where nfwd and nbwd are the number of sensor data within
the distance threshold Dthr in the front and behind half of the
robot. nall is number of all sensor data (nall = nfwd+nbwd).

A. Definition of reward

To adjust the weight coefficients of the evaluation function
with Q-learning, the reward R is defined as follows.

R = R1 +R2 +R3 (12)

where R1, R2, and R3 are rewards related to the goal or
collision, distance from the goal position, and distance from
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TABLE I
CONTROL PARAMETERS

V max Maximum Translational Velocity 0.22 [m/s]
V min Minimize Translational Velocity -0.1 [m/s]
Ωmax Maximum Angular Velocity 1.5 [rad/s]
Ωmin Minimize Angular Velocity -1.5 [rad/s]

V̇ max Maximum Translational Acceleration 2.5 [m/s2]

Ω̇max Maximum Angular Acceleration 3.2 [rad/s2]
Tmax Maximum Predicted Time 4.0 [s]
∆T Time Step 0.2 [s]
Dthr Distance Threshold on s5 1.5[m]
Lrob Robot Radius 0.13[m]
Ware Weight Coefficient of Area 0.3
W dis Weight coefficient of Goal Distance 3
Fmax Max Area in s4 38[m2]
N Number of Sensor Data 24

the obstacle.

R1 =

 5000 if reach goal
−200 else if collide obstacle
−2 otherwise

(13)

R2 =

{
10 if approach goal
−10 Otherwise (14)

R3 =

{
−5 if approach obstacle
5 Otherwise (15)

B. Definition of action dimension

The weight coefficients of position, velocity, and obstacles
are each selected from 1, 2, and 3. Note that we removed
the set {2,2,2}, {3,3,3} because it has the same meaning as
{1,1,1}. Finally, the 25 combinations are obtained and they
constitute the action dimension.

Thus, the Q-table consists of actions of weight coefficients
in the evaluation function, states of the robot, and environ-
mental situations. By using the learned Q-tables, DQDWA
selects the optimal path by using dynamic weight coefficients
considering environmental situations.

VI. SIMULATION

A. Simulation Setup

The simulation system was implemented by Robot Op-
erating System (ROS) and Gazebo. In this simulation, we
simulated the four patterns; DQDWA, and DWA with fixed
weight coefficients such as DWA I, DWA II, and DWA III.
The fixed weight coefficients {W gol,W vel,W obs} of DWA
I, DWA II, and DWA III were set as {1,1,2}, {1,2,1}, and
{2,1,1}, respectively. Table I shows simulation parameters.

B. Pre-Train of Q-table

Fig. 6 (a)-(e) show the environments used in the learning
process. Environments and goal positions were randomly
selected at the beginning of each trial as shown in Ta-
ble II. GBxgol and GBygol are the X and Y coordinates of
the goal positions. ([−1.2, 1.2], [−1.2, 1.2]) means GBxgol

and GBygol which are randomly selected from range of
[−1.2, 1.2]. The red-filled area in Fig. 6 indicated the goal
position. As shown in Fig. 6 (a)-(c), Env. 1-Env. 3 were set
up to verify differences in robot behavior due to crowding

TABLE II
GOAL POSITIONS IN EACH ENVIRONMENT OF LEARNING PHASE

Environment (GBxgol,GB ygol)

Env. 1 ([−1.2, 1.2], [−1.2, 1.2]) (resolution: 0.1)
Env. 2 ([−1.2, 1.2], [−1.2, 1.2]) (resolution: 0.1)
Env. 3 (1.3,1.6), (-1.3,1.5), (0.5,-1.5), (-0.5,-1.5)
Env. 4 (0.0,4.0), (-0.5,3.0), (0.0,3.0), (-1.5,2.5),

(-2.0,0.5), (0.5,-3.0), (1.0,-3.0), (1.5,-2.5)
Env. 5 (0.0,8.0)

TABLE III
CASE S1 RESULTS (1TIME IN EACH ENVIRONMENT)

Environment Method Success Rate [%] Time [sec] TL [m] PD [rad]
Env. 1 DWA I 100 19.9 1.75 3.88
(1 Time) DWA II 100 14.9 1.98 2.95

DWA III 100 16.4 2.06 10.4
DQDWA 100 14.3 1.98 3.35

Env. 2 DWA I 100 15.4 2.02 9.47
(1 Time) DWA II 100 15.3 2.19 9.38

DWA III 100 18.2 2.25 4.19
DQDWA 100 14.0 2.04 3.12

Env. 3 DWA I 100 21.5 2.32 4.33
(1 Time) DWA II 100 15.1 2.14 1.60

DWA III 0 - - -
DQDWA 100 15.5 2.22 2.72

Env. 4 DWA I 100 26.6 4.14 3.35
(1 Time) DWA II 100 24.3 3.96 2.32

DWA III 0 - - -
DQDWA 100 23.8 3.96 2.04

Env. 5 DWA I 100 46.7 7.84 5.33
(1 Time) DWA II 100 44.0 7.65 4.34

DWA III 100 43.6 7.55 3.72
DQDWA 100 42.8 7.55 3.83

in a restricted space. As shown in Fig. 6 (d), Env. 4 was
to examine robot behavior in a wide space with many
obstacles. In Fig. 6 (e), Env. 5 was to evaluate robot behavior
with obstacles and humans. All environments were designed
assuming the use in warehouses and factories. The learning
was continued until the Q-table was updated 30,000 times.

C. Simulation Environment

In this simulation, the following two types of simulations
were conducted. Case S1 is 1 time simulation in each
environment (Env. 1-5). Case S2 is 30 times simulations
in unlearned environment (Env. 6). The start position was
(GBxsta,GB ysta) = (0.0, 0.0) in Case S1-S2. In Case
S1, the goal positions of Env. 1-5 (GBxgol,GB ygol) were
set (−1.2,−1.2), (−1.2,−1.2), (−1.3, 1.5), (0.0, 4.0), and
(0.0, 8.0). In Case S2, the goal positions were randomly
chosen from red-filled areas as shown in Fig. 6 (f). Env. 6
was an environment with even more obstacles than Env. 4.
It tests the robot’s ability to handle obstacles that were not
present during the learning phase.

D. Simulation Results

1) Case S1: Table III and Table IV show the results
of Case S1. TL and PD mean the trajectory length and
the movement posture displacement. Table IV shows the
collision numbers and average of time, TL, and PD. Figs. 7-
10 show the trajectories in each environment.
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(a) Env. 1 (b) Env. 2 (c) Env. 3 (d) Env. 4 (e) Env. 5 (f) Env. 6
Fig. 6. Image of Each Environment

(a) Env. 1 (b) Env. 2 (c) Env. 3 (d) Env. 4 (e) Env. 5 (f) Env. 6

Fig. 7. Trajectories of DWA I ({W gol,W vel,W obs} ={1,1,2})

(a) Env. 1 (b) Env. 2 (c) Env. 3 (d) Env. 4 (e) Env. 5 (f) Env. 6

Fig. 8. Trajectories of DWA II ({W gol,W vel,W obs} ={1,2,1})

(a) Env. 1 (b) Env. 2 (c) Env. 3 (d) Env. 4 (e) Env. 5 (f) Env. 6
Fig. 9. Trajectories of DWA III ({W gol,W vel,W obs} ={2,1,1})

(a) Env. 1
space-4mm

(b) Env. 2 (c) Env. 3 (d) Env. 4 (e) Env. 5 (f) Env. 6

Fig. 10. Trajectories of the Proposed Method (DQDWA)

In DWA I-III, though favorable results in some environ-
ments were shown, the robot sometimes had the collision.
In addition, it took a long time to reach the goal position.
Simulation results in DWA I-III were dependent on the en-
vironmental situation since these methods used fixed weight
coefficients.

In DQDWA, it succeeded in reaching the goal position in
the shortest time and the smallest TL and PD. It is because

DQDWA considers space and congestion. In other words,
optimal weight coefficients depending on each environment
were selected. DQDWA allows for more efficient routing
while maintaining safety and not wandering in the same
place.

2) Case S2: Table V shows the results of Case S2. Fig. 7-
10 (f) show the trajectories in Case S2. In this simulation,
the goal position was randomly set at the beginning of each
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TABLE IV
CASE S1 RESULTS (AVERAGE IN EACH ENV. )

Method Collision [-] Time Average [sec] TL Average [m] PD Average [rad]
DWA I 0 26.0 3.61 5.27
DWA II 0 22.7 3.58 4.12
DWA III 2 26.1 3.95 6.10
DQDWA 0 22.1 3.55 3.01

TABLE V
CASE S2 RESULTS (30 TIMES)

Environment Method Success Rate [%] Time [sec] TL [m] PD [rad]
Env. 6 DWA I 93 29.1 4.27 11.76

(30 Times) DWA II 80 26.8 4.25 8.76
DWA III 70 27.5 4.03 7.48
DQDWA 93 27.3 4.10 7.83

trial. The goal position in Env. 6 is selected from four points;
(GBxgol,GB ygol) were (2.0,−3.0), (3.0, 2.0), (−2.0,−3.0),
and (−3.0, 2.0).

DWA I took a long time to reach the goal position
instead of having a high success rate. DWA II and DWA III
recorded small time, TL, and PD. However, their success rate
was relatively low, since the translational velocity and goal
distance were given as high priority compared with avoiding
obstacles.

DQDWA recorded the high success rate. In addition, it
took almost the same time as the DWA II which prioritizes
translational velocity. TL and PD were also as small as DWA
III which prioritizes the goal distance. Therefore, DQDWA
selected efficient paths while maintaining safety in unlearned
environments.

The effectiveness of the proposed method was confirmed
by the simulation results of Case S1 and Case S2.

VII. CONCLUSION

This paper proposed DQDWA; the dynamic weight co-
efficients based on Q-learning for DWA considering en-
vironmental situations. We focused on state definition for
Q-learning and added definitions for the area of spaces
considering the crowded areas. With DQDWA, the robot
could select optimal paths thanks to the adjustment of weight
coefficients. The effectiveness of the proposed method was
demonstrated in simulations.
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