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Abstract—Passenger vehicles are increasingly adopting the use
of automated driving systems (ADS) to help ease the workload
of drivers and to improve road safety. These systems require
human drivers to constantly maintain supervisory control of the
ADS. For safe adoption and ADS, the attention or alertness of
the driver needs to be continuously monitored. Past studies have
demonstrated pupil dilation as an effective measure of cognitive
load. However, the raw pupil data recorded using eye trackers
are noisy which may result in poor classification of the cognitive
load levels of the driver. In this paper, an approach to reduce
the noise raw pupil size data obtained from eye trackers used by
ADS is proposed. The proposed approach uses a Kalman filter to
filter out high-frequency noise that arises due to sudden changes
in ambient light, head/body movement, and measurement noise.
Data collected from 16 participants were used to demonstrate
the performance of the model-based pupil-size filtering approach
presented in this paper. Results show an objective improvement
in the potential to distinguish changes in pupil size due to various
levels of cognitive workload experienced by participants.

Index Terms—Cognitive load detection, Expectation-
Maximization algorithm, Eye-tracking, Human-computer
interface, Kalman filter, Physiological signals, Pupil size, and
State-space model.

I. INTRODUCTION

The present-day Automated Driving Systems (ADS) are
mostly in the ranges of level 2 or 3 (L2/L3). In L2/L3
autonomous systems, [1], the ADS is capable of performing
certain driving tasks, such as, keeping the vehicle on a lane and
maintaining its peed to preset levels by the driver; the human
driver still bears the ultimate responsibility of the vehicle and
needs to always maintain a supervisory control of the vehicle
[2]. However, ADS failure is shown to predominantly occur
due to driver distraction [3]. These observations point to the
need to have an effective Driver Monitoring Systems (DMS)
that can monitor the alertness level of the driver and warn
them about impending dangers.

Cognitive load detection has become an actively researched
arena in the automobile industry in the past few years [5].
Unlike manual and visual load, cognitive load is difficult to be
measured through direct and non-invasive measurements. Re-
searchers suggest empirical methods to estimate cognitive load
[6]. These methods involve estimating the cognitive load by
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Fig. 1: Automated Driving Systems. Flowchart depicting
cognitive load detection and response flow in ADS [4].

collecting subjective data using rating scales [7], performance
data using primary and secondary task techniques [8]–[10],
behavioural data using response times to tactile or auditory
stimulus [11], and physiological data using physiological mea-
surements [12]. Heart rate, heart rate variability, reaction time
and pupil size are some examples of physiological measures
that can be used to estimate the cognitive load of the driver.

Eye-tracking measures are considered an alternative for
cognitive load detection in ADS as they can be recorded non-
invasively [13]. Several eye-tracking metrics, such as the pupil
dilation [14], eye-gaze patterns [4], and eye-blink patterns
[15], can be utilized to quantify the cognitive load experienced
by the driver. It has been shown that pupillary reflex dilation
occurs as a result of sensory and motor movements (tactile,
auditory or gustatory), and mental and emotional efforts [13].
Past studies have shown that the mean and variance of the
pupil size increases with cognitive difficulty [16] and that
eye-tracking can be used to detect the changes in pupil size
for different conditions of cognitive difficulty [17]. Therefore,
with accurate measurement and classification of cognitive load
conditions using eye-tracking measures, more reliable ADS
can be developed.

Studies involving ADS employ low-cost portable cameras
such as webcams and infrared cameras that can be easily
installed in vehicles to continuously record pupil size at high
sampling rates [18]. However, when it comes to eye-tracking
in a driving environment, numerous factors contribute to
noise and uncertainty in the obtained pupil size measurements
[19]. Pupil size is obtained by applying signal and image
processing algorithms on the image of the person captured by a
video/infrared camera; the performance of these algorithms is
affected by the quality and resolution of the images. In-vehicle
eye trackers are likely mounted on a fixed platform such as

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 815



the dashboard; the exposure to the eyes may vary as the driver
moves their head and may result in measurement noise. This
paper presents signal processing approaches for filtering pupil
size data recorded using an infrared low-cost eye-tracker for
drivers on a driving simulator. The proposed filtering method
can therefore be extended to estimate the drivers’ cognitive
load in practical ADS.

This paper is organized as follows: An overview of the
experimental setup, measurement devices used, participants,
and the data collection procedure is briefed in Section II.
Section III and Section IV contain the descriptive and inferen-
tial analysis for the classification into three conditions of the
experiment for raw and normalized pupil data respectively.
Further, this section introduces signal-to-noise ratio (SNR) as
a measure of distinguishing varying levels of cognitive load
of drivers from pupil size measurements. Section V describes
a model-based filtering approach to improve the SNR for the
classification of cognitive load. Section VI introduces some
approaches for automated vetting data for model training and
classification. Section VII provides the results of the new
filtering approach in terms of SNR improvement and filtered
pupil size plots for all data collected during the experiment.
Finally, Section VIII concludes the paper.

II. EXPERIMENTAL DETAILS

In order to demonstrate driver distraction detection, ex-
perimental data was collected from 16 participants while
they drove on a medium-fidelity driving simulator. Sixteen
participants in age ranges from 19 to 32 years (M = 24,
SD = 3) were recruited for this study. All the participants
were from the student and staff population at the University
of Windsor. All participants were required to have a valid
Ontario G2 license [20] or equivalent for at least two years
with no fault in driving record for one year. In order to emulate
driver distraction, participants were asked to participate in a
number-back (n-back) task [21] of different difficulty levels
(0-back and 2-back.) In the 0-back task, participants had to
repeat out loud the number they just heard. In 2-back task,
participants had to repeat out loud two numbers previous to
the number they just heard. For the first two numbers, no
response was required. The duration of each N-back task was
five minutes during which 114 numbers were announced and
the participants response to the audio stimulus was recorded.
The participants also performed a ‘Control’ condition where
they performed only driving and DRT tasks without N-back.
A medium-fidelity driving simulator software called OpenDS
[22] was used in the experiment. A Logitech G29 driving
wheel [23] with pedals was used in this experiment. The
driving wheel was mounted on the table in front of the desktop
and the pedals were below the table. In order to validate
the cognitive difficulty experienced by the participants, a
Detection Response Task (DRT) [24], [25] and the subjective
measure, NASA-TLX [26] were used. The Gaze-Point (GP3)
eye-tracking system [27] was used to collect pupil size,
eye-gaze, fixations and eye-blinks data. The eye-tracker was
mounted on the desktop along the eyeline of the participant to

record the eye-tracking data while driving. In the remainder
of this paper, we consider only the pupil size data collected
through the above experiment for cognitive load classification.
More details are available in [4].

DRIVING SIMULATOR

BIOPAC ECG RECEIVER

SPEAKER

NASA-TLX RECORDER

DRT STIMULUS

DRT SWITCH

LOGITECH DRIVING 
WHEEL AND PEDALS

EYE-TRACKER

MICROPHONE

Fig. 2: Experimental setup. The apparatus and the setup
used for all 16 participants are shown. ECG belt (not shown
in the figure) was worn by the participant in contact with their
skin forming a triangle around the heart [4].

III. CLASSIFICATION USING RAW PUPIL SIZE DATA

In Figure 3(a), the pupil size data from participant ID01 is
shown for three difficulty conditions. The (collective) mean
value of the pupil size and the (collective) standard deviation
for each difficulty level are given by

µc = 12.4704, σc = 2.7104 (1)
µ0 = 12.9748, σ0 = 3.1139 (2)
µ2 = 13.9822, σ2 = 3.1395 (3)

Figure 3(b) shows the mean pupil of each participant as a box
plot.
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(a) The raw data corresponding to
three difficulty conditions.
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(b) Box plot of mean pupil size.

Fig. 3: Pupil size.

Statistical analysis [14] using the raw data concluded that
the pupil diameter was significantly different for the dif-
ferent conditions during the experiment with F(2, 30) =
12.105, p < 0.05, η2p = 0.045. Post-hoc analyses with a
Bonferroni adjustment revealed that two of the 3 pairwise
differences: {‘control’, ‘2-back’ } and {‘0-back’, ‘2-back’}
were significantly different with p < 0.05 whereas there was
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no statistically significant difference in the {‘control’, ‘0-back’
} pair.

The ability to distinguish data from two different groups, i
and j, can be quantified using the signal to noise ratio, defined
as

SNRi,j = 20 log

(
|µi − µj |

max{σi, σj}

)
(4)

where i, j ∈ {‘control′, ‘0− back′, ‘2− back′}, i ̸= j, and
µi and σi are the mean pupil size and its standard deviation,
respectively. The standard deviations σi and σj are assumed
to be comparable in magnitude.

Using the above definition, the SNR between three different
pairs is given as

SNRc,0 = 20 log

(
|12.4704− 12.9748|

3.1139

)
= −15.8 dB (5)

Similarly, SNRc,2 = −6.3 dB and SNR0,2 = −9.9 dB, Here,
the subscripts c, 0, and 2 are used to refer to ‘control’, ‘0-
back’, and ‘2-back’ difficulty conditions, respectively. That is,
i, j ∈ {c, 0, 2}.

One can notice that the higher the SNR the more likely
that different difficulty level pairs can be separated (classified)
based on the observed mean pupil size. This is confirmed by
the statistical analysis reported earlier in this section using
the same data: that there is statistically significant difference
between the {‘control’, ‘2-back’} (SNRc,2 = −6.3 dB) and
{‘0-back’, ‘2-back’} SNR0,2 = −9.9 dB pairs and there is no
significant difference between {‘control’, ‘0-back’} pair which
had the lowest SNR of SNRc,0 = −15.8 dB.

Our goal in the remainder of this paper is to improve the
SNR using various signal-processing approaches in order to
enhance classification performance.

IV. CLASSIFICATION USING NORMALIZED PUPIL SIZE
DATA

The baseline pupil size might be different for each partici-
pant due to their physical features [28]. Hence, it is important
to normalize these differences so that the data corresponding
to each difficulty level can be compared during classification.
We use the following formula to normalize data from each
participant using data collected during each of their ‘control’
level experiment.

p̃c =
pc − µc

σc
; p̃0 =

p0 − µc

σc
; p̃2 =

p2 − µc

σc
(6)

where pc, p0, and p2 denote the pupil size measurements
corresponding to the ‘control’, ‘0-back’, and ‘2-back’ condi-
tions, respectively and p̃c, p̃0, and p̃2 refer the corresponding
normalized data.

Figure 4(a) shows normalized pupil size data corresponding
to the data shown in Figure 3(a) . Figure 4(b) shows the
normalized mean pupil data as a box plot. Statistical analysis
concluded that all three pairwise differences: {‘control’, ‘2-
back’}, {‘0-back’, ‘2-back’}, and {‘control’, ‘0-back’} were
statistically significantly different with p < 0.05.
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(a) The normalized data correspond-
ing to three difficulty conditions.
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(b) Box plot of the normalized mean
pupil size.

Fig. 4: Normalized pupil size data.

Table I shows the computed SNR values before and after
normalization using the approach described in this section. It
can be noticed that the SNR improved for all pairs, which
conforms to the statistical analysis of the data, i.e., normaliza-
tion improved the ability to classify different cognitive load
conditions as indicated by the improved SNR. In the next
section, the proposed approach to filter pupil size data is
detailed.

TABLE I: Comparison of SNR before and after normal-
ization

Difficulty pairs Raw data Normalized data
‘control’ vs. ‘0-back’ −15.8 dB −4.5 dB
‘control’ vs. ‘2-back’ −6.3 dB 0.9 dB
‘0-back’ vs. ‘2-back’ −9.9 dB −2.6 dB

V. SNR IMPROVEMENT THROUGH MODEL-BASED
FILTERING

As seen by the definition of SNR (4), and through the
statistical analysis and Table I, it is evident that the variance
in the pupil size measurements is an important factor affecting
the ability detect changes in pupil size, which is an indicator of
cognitive load. If the variance in the pupil size measurements
were to be low, it will lead to an increase in SNR and hence so
does the ability to distinguish pupil size. This section presents
a signal-processing approach to reduce the noise variance
in pupil size measurement; the signal-processing approach is
selected in a way that noise in pupil size measurement due to
various high-frequency disturbances will be suppressed while
the information pertaining to cognitive load will be retained.

Figure 3(a) shows the pupil size data in pixels collected
at a sampling rate of 60 Hz over a 30-second period using a
Gazepoint GP3 eye tracker. The accuracy of the recorded pupil
data depends on many factors, including, the quality of the
camera, the angle of camera orientation to the eyes, proximity,
external light, and the robustness of estimation and detection
algorithms against the head movement, to name a few. Due
to this, the measured pupil size will be noisy. Further, it is
assumed in this paper that the pupil size measurement noise
is distributed zero-mean white Gaussian [29].
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We saw in Section IV that the pupil size data needs to
be normalized in order to remove discrepancies pertaining
to individual physiological features. In order to further im-
prove classification performance, we will focus on reducing
the measurement noise through model-based filtering. First,
considering that the measurement noise is white, an averaging
method is employed to reduce measurement noise. Figure 5
shows the raw pupil size data (of Figure 3(a)) along with its
averaged measurements over a 2-second window.
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Fig. 5: Measurement noise reduction through averaging.
The raw pupil size data along with the averaged values over a
2-second block. Averaging serves as a pre-processing before
applying model-based filtering on the data. The time length
of each data block is also important — averaging over a
longer window of data might suppress valuable pupil reflex
information due to cognitive loading. One of the averaged data
from Figure (a) is shown in (b).

It must be noted that the averaging should be done carefully
to avoid losing sensitive information related to cognitive load.
Figure 5(b) shows just one of the averaged data, corresponding
to the ‘control’ level from Figure 5(a), in order to further illus-
trate this. It must be noted that the jump in pupil size during the
150-200 second duration is in response to realistic cognitive
demand imposed by the driving simulator. Considering that
cognitive load change is observed to change over the span
of several seconds, it is decided to limit the data averaging
window to a maximum of 2 seconds. Since the frequency of
the eye-tracker used in the experiment is 60 Hz, the 2-second
data window has, on average, 200 pupil size measurements. A
brief inspection of Figure 5(b) shows that averaged measure-
ments result in reduced variance. Indeed, it can be shown that
[30], averaging results in the maximum likelihood estimate of
the parameter (pupil size in this case) with reduced variance
under the assumption that the measurement noise is distributed
zero-mean Gaussian.

A closer look at Figure 5(b), one of the averaged mea-
surements, gives the following observations related to the
experiment: The increase in pupil size during 0-25 seconds
is due to the participant starting the vehicle and familiarizing
themself with the driving environment; the drop in pupil size
during 25-150 seconds is due to incident-free driving on a
straight highway; the increase during 150-175 seconds and
then 350-375 seconds are due to encountered challenges on

the driving path. Even though the 2-second averaged data
in Figure 5(b) reasonably reflects the realistic cognitive load
changes along the driving path, the data still has spiky features
representing noise. From now on, we will refer to this as the
measurement noise.

Remark 1. The two second window for averaging is selected
to make sure that high frequency noise that is typical due to
body movement, cardiac activity, sudden changes in ambient
light, e.g., change in light intensity caused by shades in traffic,
are reduced due to averaging.

Next, a state-space model is introduced to filter the pupil
size data that already underwent a two-second averaging
process described above. This model allows to be tuned in a
way that pupil size of certain characteristics are retained and
the effect of others reduced. First, the following state-vector
is introduced

x(k) = [x(k) ẋ(k)]T (7)

where k denotes time index, x(k) the pupil size in pixels
at time k, and ẋ(k) denotes the rate of change of pupil in
pixels/seconds at time k.

The change of state vector from time instance k to time
instance k + 1 is modelled through the following process or
plant equation [30]

x(k + 1) = Fx(k) + Γv(k) (8)

where

Fk =

[
1 ∆
0 1

]
, Γ =

[
∆2/2
∆

]
(9)

and ∆ denotes the sampling time. The process noise term
v(k) is modelled as a zero-mean Gaussian white noise with
standard deviation σv . From this assumption, the process noise
covariance matrix can be shown to be [30]

Qk = E
[
Γv(k)v(k)TΓT

]
=

[
1
4∆

4 1
2∆

3

1
2∆

3 ∆2

]
σ2
v = Q̄kσ

2
v

(10)

The process noise variance σ2
v is one of the important design

parameters for the proposed application in this paper. The
process noise is used to model the unknown factor in how
pupil size changes over time. Higher process noise indicates
rapid changes in pupil size and vice versa. For example, let us
inspect the pupil size changes in Figure 5(b). At first, the pupil
size changed from 8 to 11 pixels in approximately 10 seconds,
resulting in 0.3 pixels/second rate. During the next increase
(from 175 sec. to 225 sec.) it took 50 seconds for an approx-
imately 2-pixel increase, resulting in 0.04 pixels/seconds rate.
At the last stretch, there is an increase of 3 pixels over 75
seconds, resulting in 0.04 pixels/second rate. From 10 s to 75
s pupil size dropped from 11 to 9 pixels, resulting in 0.04
pixels/second. Finally, there were large sectors of data where
there are no changes at all (0 pixels/second). The quantity σ2

v

represents the variance of all such change rates in pupil size.
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In the context of the proposed application, an approximate
value of the process noise variance can be obtained. The best
way to come up with a reasonable value for the process noise
variance is to learn from real-world eye-tracking data. Several
experimentations with the data showed σv = 0.01 pixels/s2 to
be a suitable value to represent typical variance in pupil size
changes in averaged pupil size observations in a two-second
window. In [31], this was confirmed through a machine-
learning approach based on the Expectation-Maximization
(EM) algorithm.

Let us denote the pupil size out of the two-second average
process as z(k); from this point, z(k) will be treated as the
‘measurement’ that relates to the state vector defined in (7) as
follows

z(k) = Hx(k) + w(k)

= [1 0]x(k) + w(k) (11)

here, the measurement noise is modelled as a zero-mean white
Gaussian noise with the following variance

σ2
r = E

{
w(k)2

}
(12)

Figure 5(b) shows a real-world example of the measurement
noise w(k) based on the data recorded from participant-1.
This measurement noise variance σ2

r is dependent on various
factors, including the quality of the recording device. A data-
driven approach, based on the expectation maximization (EM)
algorithm [31] is used to estimate the measurement noise
parameter σr. Based on the data from all 16 participants, the
standard deviation of the measurement error is found to be
approximately σr = 1 pixels (see details in [31]).

The proposed state-space model to filter the pupil size
consists of the process equation (8) and the measurement
equation (11). The parameter σv of the process model is
selected based on the characteristics of the cognitive load
dynamics and the parameter σr of the measurement noise is
estimated based on data-driven approaches as detailed above.
Based on these discussions so far, the model parameters are
found to be σv = 0.01 pixels/s2 and σr = 1pixels. In
the remainder of the data analysis, the above two model
parameters will be used. Once the model and its parameters
are identified, the Kalman filter [30] will be used to recursively
estimate (or filter) the state x(k) which has the desired pupil
size as its first element.

Figure 6 demonstrates the performance of the proposed
pupil size filtering approach using data from one of the
participants. In Figure 6(a), the two-second averaged pupil
size measurements (i.e., ‘measurements’) are shown using the
marker ‘*’. The output of the proposed Kalman filter is also
shown on the same plot in a solid line. As a comparison,
Figure 6(a) also shows a regular averaging approach for the
purpose of reducing the variance in the noisy pre-processed
data. This smoothing-based approach to filtering the raw data
uses a 5-point moving average. Later, the performance of the
smoothing approach and the proposed model-based Kalman
filtering approach are compared side by side and it was

concluded that the proposed approach outperforms the moving
average filter. Figure 6(b) shows the normalized mean pupil
data filtered using the smoothing average filter as a box plot.
This box plot will later be compared to the one generated
through the Kalman filtering approach, shown in Figure 8.

50 100 150 200 250 300
Time (sec)

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

P
up

il 
S

iz
e 

(p
ix

el
s)

Pupil size for participant ID = 1 (control)

Measurements
Moving average filter
Proposed filter

(a)

Control 0-Back 2-Back
Difficulty Level

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

 m
ea

n 
pu

pi
l s

iz
e 

(p
ix

el
s)

Filtered(Moving average) pupil size data - 16 participants

(b)

Fig. 6: Filtered pupil size data. (The averaged data in Figure
5(b) is sent through the model-based filter presented in Section
V to obtain the filtered output shown in yellow. A 5-point
average filter is also applied to the data from Figure 5(a).

VI. AUTOMATED APPROACH TO DATA SELECTION

Physiological data acquisition systems encounter an unusual
amount of errors due to various types of disturbances. This
section presents two automated approaches to detect such
abnormal measurements so that they can be removed from
further analysis.

A. Outlier Removal
A preliminary inspection of the pupil size data showed

occurrences of negative values and outliers, i.e., unrealistic
pupil size values. Based on visual inspection, it was decided to
remove pupil size data that is below 5 pixels and above 25 pix-
els from further consideration. Each eye-gaze point data output
from the Gaze point GP3 eye-tracker is accompanied by a flag
of either ‘0’ or ‘1’. It was described by the manufacturer that
the flag values of ‘0’, correspond to unreliable (less confident)
estimates. Hence, only the gaze point data corresponding to
flag ‘1’ was extracted for further consideration. This type of
outlier removal in pupil size data is in line with our previous
studies conducted by the authors [14] and studies conducted
by other researchers [32].

B. Missing Data Index
The outlier removal described in subsection VI-A resulted in

loss of data. If the loss of data is too great for a given scenario
(participant or condition) the entire dataset belonging to that
condition was excluded form further analysis. The following
data quality measure is used to decide wether or not to retain
the data for further analysis

Qdata =

(
number of retained data points

total number data points

)
× 100 (13)

where Qdata ∈ [0, 100%]. Here, higher the Qdata the better is
the quality of the data.
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C. Normalized Innovation Squares

The Kalman filtering process gives a way of quantifying the
measurements by computing the normalized innovation square
(NIS) [30] that is defined as

NIS(k) = ν(k)TS(k)−1ν(k) (14)

where ν(k) is the innovation (the difference between the
predicted measurement and the observed one) of the Kalman
filter at time index k. When a Kalman filter processes data
that conforms to the assumed model, the NIS values will stay
within a specific limit [31]; when the Kalman filter is fed with
measurements that do not conformed to the underlying model
assumption, the NIS values jump out of their predetermined
bound. Based on this observation, the following quality mea-
sure is defined

QNIS =

(
number of NIS(k) within the bound

length of data

)
× 100

(15)

where QNIS ∈ [0, 100%]. Once again, higher the QNIS the
better is the quality of the data.

Figure 7 shows demonstrations of data quality indices using
pupil size data from participants 1 and 7, respectively. In
Figures 7, 98% of the NIS values were within the bounds —
indicating that the data fit well to the hypothesized model in
Section V. Further, 99% expected data were present, indicating
that the eye-tracker functioned well and that the participant
followed all the guidelines of the experiment.
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Fig. 7: Quality monitoring. Pupil size data belonging to
participant#1 is shown above. This data represents one of the
best scenarios in the dataset: 99% of the expected data was
present and the NIS was within the limit for 98% of the time.

VII. RESULTS

This section provides an approach to remove data that
suffered quality issues:

• Data score. For each dataset (‘control’, ‘0-back’, and ‘2-
back’) of each participant (1-16), a score of ‘1’ is given
if Qdata is less than 75%.

• Model score. For each dataset (‘control’, ‘0-back’, and ‘2-
back’) of each participant (1-16), a score of ‘1’ is given
if QNIS is less than 75%.

Using the above scoring system, each participant could receive
a score of zero to six; zero indicating no quality issues and six
indicating quality issues with all three datasets of a participant.
Thus, datasets from participants 7, 10 and 16 were removed,
resulting in data from 13 participants for further analysis
pertaining to cognitive load classification.

Figure 8 shows the mean pupil sizes of the filtered data
from the remaining 13 participants.
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Fig. 8: Filtered pupil size data. The raw data corresponding
to three difficulty conditions is shown. Each level lasted
approximately 5 minutes and the red line depicts the median
across the particular condition.

Table II shows the newly computed SNR using the filtered
data (13 participants) in comparison to previous values shown
in Table I. The SNR values computed for the pupil size data
using the moving average filter are also added to this table for
comparison with the proposed approach. It can be observed
that the moving average filter did not result in an improved
signal-to-noise ratio. The proposed model-based filtering using
the Kalman filter approach resulted in significant improvement
in all three difficulty pairs.

TABLE II: Comparison of SNR after filtering and screening

Pairs C-0 C-2 0-2
Raw data −15.8 dB −6.3 dB −9.9 dB

Normalized data −4.5 dB 0.9 dB −2.6 dB
Moving average filter −4.3 dB 0.6 dB −2.9 dB

Kalman filter −2.4 dB 7.2 dB 4.3 dB

VIII. CONCLUSIONS AND DISCUSSION

In this paper, the problem of cognitive load classification
in drivers using pupil size data is considered. Particularly, the
pupil size data collected from a low-cost eye tracking device
is evaluated for potential applications in Automated Driving
Systems (ADS). This paper presented a signal processing
approach that is designed to remove some form of high-
frequency noise from the measured pupil size data while
retaining possible changes in pupil size as a result of changes
in cognitive load. The proposed approach consists of a linear
state-space model; some of the parameters of this model are
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estimated based on data-driven approaches whereas some other
parameters were selected based on prior information about the
nature of pupil size dynamics as a result of cognitive load.
Table III contains the SNR values, computed according to (4),
for raw, normalized and filtered pupil size data collected from
16 participants. It also contains the SNR values computed for
the Detection Response Task (DRT) which is the ISO standard
for cognitive load estimation. In addition, the Table III contains
additional measures of cognitive load such as heart rate,
n−back accuracy and eye-gaze based measures [4] calculated
from data collected during this experiment. From this table, it
can be observed that the SNR for normalized and filtered pupil
size data is comparable to the ISO standard of DRT response
times. Among the two physiological measures, pupil size and
heart rate, SNR values were observed to be greater for pupil
size. Although eye-gaze data can be used for better estimation
of driver’s cognitive load, pupil size has its advantages in that
eye-gaze can be controlled by the participant whereas pupil
size cannot be. Also, pupil size can be used in conjunction
with other metrics to improve the accuracy of cognitive load
estimation. Thus, the signal processing techniques introduced
in this paper are applicable to improve individual datasets and
are valid regardless of the sample size.

TABLE III: Comparison of SNR based on different metrics
of cognitive load. The last three measures are eye-gaze
metrics. [4]

Measure of cognitive load SNRc,0 SNRc,2 SNR0,2

Response time -4.99 0.06 -6.01
Pupil size (Raw) -15.81 -6.35 -9.87

Pupil size (Normalized) -4.5 0.9 -2.6
Pupil size (Filtered) -2.4 7.2 4.3

Pre-processed heart rate -24.06 -12.03 -6.92
n−back accuracy 8.83

Entropy in eye movements 10.41 11.43 1.25
Nearest neighbor index 2.26 0.13 -7.35

Entropy of gaze transitions -12.31 4.84 -0.54
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