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Abstract—Geometric parameter errors have a direct impact on 

the positioning accuracy of industrial robots, making their 

reduction crucial for enhancing accuracy. Identifying the key 

geometric parameter errors with the greatest impact on robot 

accuracy significantly improves its performance. In this paper, we 

estimate the impact of geometric parameter errors in industrial 

robots on position accuracy using sensitivity analysis with the 

Random Forest (RF) method. Firstly, the kinematic error model 

of the industrial robot is constructed based on the MD-H 

convention. The principle of RF method is presented, and the 

geometric parameter errors are randomly sampled by the Latin 

hypercube sampling (LHS) method, the predictor delta 

importance (PDI) of each geometric parameter error is calculated. 

Then, the influence of each geometric parameter error on the 

position accuracy of the same pose is analyzed. Finally, a 

simulation experiment is performed with a 6-DOF industrial robot 

to validate the proposed method's correctness and effectiveness. 

The results indicate that the precision design of the vital geometric 

parameter errors could significantly enhance the position 

accuracy of the industrial robot. 

I. INTRODUCTION 

Because of its flexibility, intelligence and versatility, 
industrial robots are used in many industrial manufacturing 
fields. Due to the manufacturing errors, assembly errors, motion 
control errors, and other factors of the core components of 
industrial robots, geometric parameter errors may occur in 
industrial robots[1]. Geometric parameter errors in industrial 
robots result in deviations between nominal and actual position 
and orientation, leading to a failure to meet high-precision 
requirements. Therefore, improving position accuracy in 
industrial robots is of significant importance. 

To enhance the position and orientation accuracy of 
industrial robots, reducing geometric parameter errors in the 
design, processing, and assembly stages is crucial[2, 3]. Each 
geometric parameter error of an industrial robot has a unique 
impact on position and orientation accuracy. To enhance the 
position and orientation accuracy quickly and effectively, and 
avoid the blindness of error compensation, sensitivity analysis of 
geometric parameter errors is usually required. 

Sensitivity analysis methods are mainly divided into two 
categories: local sensitivity analysis and global sensitivity 
analysis[4, 5]. The common methods of local sensitivity analysis 
include partial differential method[6] and space vector 
projection method[7]. The local sensitivity analysis method is 
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performed to assess the sensitivity of the geometric parameter 
errors of industrial robots in the above methods. This simple yet 
effective method is particularly suitable for linear models. 
However, only the influence of a single geometric parameter 
error on the pose error could be analyzed. The interval range of 
geometric parameter errors cannot be too large. The local 
sensitivity analysis method is not suitable for the nonlinear 
kinematic error model of industrial robots. 

The global sensitivity analysis method effectively addresses 
the limitations of local sensitivity analysis, making it applicable 
to both linear and nonlinear models. The interval range of 
geometric parameter errors can be extended to its entire domain 
of definition. The sensitive coefficients of all geometric 
parameter errors can be calculated simultaneously[8, 9]. In this 
paper, the global sensitivity analysis method based on random 
forest, aided by the eigenvalue PDI, is employed to analyze the 
sensitivity of geometric parameter errors in the IRB 2400 
6-DOF series robot. The goal is to identify the most influential 
sources of geometric parameter errors that impact the robot's 
positioning accuracy. This analysis serves as a crucial 
foundation for enhancing the absolute position accuracy of 
industrial robots. 

II. KINEMATIC ERROR MODELING OF THE INDUSTRIAL ROBOT 

The Denavit-Hartenberg (D-H) convention is commonly 
utilized in kinematics modeling for industrial robots[10], but it is 
impossible to express the small rotation between parallel axes. 
Based on the D-H model, some scholars proposed a MD-H 
(Modified D-H) kinematic model that includes an angle 
parameter β around the y axis between the parallel axes to 
improve the accuracy of the kinematic model. The D-H 
convention method is introduced firstly. 

The homogeneous transformation matrix describes the 
relationship between adjacent links in the D-H convention. The 
schematic diagram of two adjacent joints and links is depicted in 
Fig. 1. Four kinematic parameters are used to locate the {i-1} 
frame relative to {i} frame in the D-H convention. The four 
geometric parameters could be divided into two categories: link 
parameters and joint parameters. The link parameters consist of 
the link length ai-1 and link twist angle αi-1. The joint parameters 
include joint angle θi and link offset di. The homogenous 
transformation matrix of two adjacent link frames {i} and {i-1} 
could be expressed as in (1). 

 
1 1 1( , ) ( , ) ( , ) ( , )i

i i i i iRot x Trans x a Rot z Trans z d   T  (1) 

Where Rot(•) denotes the rotation transformation matrix along 
the axis and Trans(•) represents the translation transformation 
matrix around the axis. 
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Fig. 1.  Two adjacent joints and links in an industrial robot 

When axis 2 and axis 3 of an industrial robot are parallel, a 
singular solution will result. This requires the introduction of an 
angle parameter β around the y-axis when i is equal to 2, namely, 
the construction of an MD-H model containing 5 parameters to 
make up for the defects of the D-H model. When i is equal to 2, 
the homogeneous transformation matrix between two adjacent 
link frames can be expressed as: 

 
 

1 1 1( , ) ( , ) ( , )

          ( , ) ,

i

i i i i

i i i

Rot x Trans x a Rot z

Trans z d Rot y

 



  T
 (2) 

For the industrial robot with six revolute joints shown in 
Fig. 2, six homogenous transformation matric could be obtained. 
Thereby, the overall transformation matrix between the robot 
base frame {0} and the end-effector frame {6} could be 
described in (3).  
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Assuming that the position of tool center position (TCP) in 
the end-effector frame are respectively 6P. Thus, the ideal 
position 6Pideal of the TCP in the robot base frame could be 
calculated as in (4). Without loss of generality, the value ideal 
position is defined as 6Pideal=[0 0 0 1]T. 

 0 0 6

6ideal P T P          (4) 
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Fig. 2.  Structure of the industrial robot with six revolute joints. 

Equation (3) is the ideal kinematics model of the industrial 
robot. Due to the assembly errors and manufacturing errors of 
the robot, the nominal geometric parameters of the robot will be 
different from the actual geometric parameters. Assuming that 
the geometric parameter errors of industrial robots are 

respectively δai-1, δdi, δαi-1, δθi, δβi. The actual homogenous 
transformation matrix between two adjacent link frames {i} and 
{i-1} could be expressed as in (5). 
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Thus, the actual transformation matrix between the robot 
base frame and the end-effector frame could be expressed as in 
(6). 
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Due to the influence of geometrical parameter error factors 
of industrial robots, the actual position of the TCP in the robot 
base frame are different from the ideal that of TCP. The actual 
position 6Pactual of the TCP in the robot base frame could be 
computed as follows: 

 0 0 6

6actual actualP T P  (7) 

The positional error of the TCP could be denoted as in (8). 

 0 0[ , , ]T

px py pz actual ideale e e   P P P  (8) 

Where epx, epy, epz are the positional errors of the end-effector 
frame along the x, y, and z axes relative to the base frame. 

The absolute positional errors could be respectively 
expressed as in (9). 

 
2 2 2

p px py pze e e e   P  (9) 

III. SENSITIVITY ANALYSIS OF GEOMETRIC PARAMETER 

ERRORS BASED ON RANDOM FOREST 

The sensitivity analysis of geometric parameter errors 
quantifies how each geometric parameter error affects an 
industrial robot’s positional errors. This section uses an 
RF-based method in the robot’s error model to estimate each 
error’s contribution on the positional errors. 

A. Latin Hypercube Sampling 

Before performing parameter sensitivity analysis, it is 
necessary to sample the variables within their range. Latin 
Hypercube Sampling (LHS) is a type of stratified random 
sampling technique[11]. It is capable of effectively sampling 
from the distribution range of variables. LHS can ensure 
uniform sampling of variables under small samples. Therefore, 
LHS is used to sample the variables in this paper. The principle 
of LHS is depicted as follows: 

X =[X1, X2,..., Xm]T is the input variable vector, and m is the 
number of input variables. The range of the error of variable Xi is 

between the lower limit ai and the upper limit bi: δXi∈[ai,bi], 

and the distribution of the error probability is uniform. If the 
number of samples extracted is N, the following four steps can 
be used to create the sample training set. Firstly, the interval(0,1) 
is divided into N intervals of equal size, each of which is 1/N; 
Secondly, randomly generate N numbers in the interval (0,1), 
denoted as r1, r2 ,…, rN ; Thirdly, the selected value of the error of 
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the variable Xi in the jth interval is introduced as: 

 
  1 j i i

i i

j r b a
x a

N


  
   (10) 

Lastly, the order of the N selected points of the variable Xi 

error is disordered and then combined with each other with the 
selected points of other variable errors to form the training set of 
samples needed for training. 

Compared with other methods, LHS reduces the variance of 
sample points due to stratified sampling and avoids the 
repetitiveness of samples. The samples are distributed in each 
Section. Once the sample points are sampled from this section, 
they will no longer be sampled. LHS maintains the 
independence and randomness of the samples and greatly 
improves the sampling efficiency. 

B.  The Principle of Random Forest 

Random Forest (RF) is a statistical learning theoretical 
method that can be used to deal with classification and 
regression problems. It was proposed by Breiman in 2001[12]. 
RF can directly analyze high-dimensional variables without the 
need to reduce the dimension of samples. At the same time, RF 
algorithm is stable, not susceptible to outliers and noise, and not 
easy to appear overfitting phenomenon during training. 
Therefore, the method of RF processing nonlinear regression 
problem is applied to the error sensitivity analysis of robot 
geometric parameters.  

The schematic diagram of random forest model is shown in 
Fig. 3. RF mainly uses the idea of integrated learning, which 
consists of a basic unit of decision trees, each of which is 
independent and parallel to each other. The Bootstrap sampling 
technique was used for each decision tree, that is, random and 
put back samples were extracted from the original sample set, 
and then the extracted sample set was input as the training 
sample of the tree[12]. When the decision tree is being trained 
and the nodes of the tree are split, some feature dimensions of 
fixed size are randomly selected from the multi-feature input 
samples for splitting. When the training of each decision tree is 
completed, the training results of all decision trees are integrated 
to form the final training results of the entire random forest 
model.  

  

Fig. 3.  Schematic diagram of RF model 

Some samples in the original sample set will not participate 
in the construction of the decision tree, which is called OOB 
(Out-Of-Bag) samples of the decision tree. OOB samples can be 
used as sample data to test the regression effect of decision tree. 
If the predicted result of OOB samples is close to the regression 

curve fitted by decision tree, it indicates that the effect of 
decision tree training is better[13].  

Predictor Delta Importance (PDI) may have three scenarios: 
positive, negative and zero[14]. The order of one of the variable 
values in the OOB sample is disrupted, and the order of the 
remaining variable values is kept unchanged, and then the OOB 
sample is brought back into the decision tree model for 
prediction, and if the prediction results instead make the error of 
the prediction results larger and the prediction results further 
away from the regression curve, i.e., the correlation between the 
input variables and the output response is broken, this indicates 
that the input variables have a greater ability to influence the 
output response, at which point the PDI is positive; If the 
predicted result is always the same after disturbing the order of 
the variables, the variable does not affect the output response 
and the PDI of this input variable is 0; If after disordering the 
variables, the prediction results instead have less error and the 
prediction results are closer to the regression curve, then the PDI 
is negative. The PDI size of the input variable in the whole 
random forest is then jointly determined by the PDI of the 
variable in all decision trees, and the mean value of PDI of the 
variable in all decision trees is used to represent the PDI size of 
the variable in the whole random forest. 

The PDI of OOB data reflects the importance of variables to 
some extent and has the same characteristics as the sensitivity 
index in sensitivity analysis. When the PDI of an input variable 
is larger than that of other variables, it indicates that among all 
input variables, the sensitivity index of this variable is larger 
than that of other variables, and the influence of this variable on 
the output response is also higher. Otherwise, it indicates that the 
sensitivity of this variable is small among all input variables, and 
its influence on the output response is also low. Therefore, the 
sensitivity analysis of the robot geometric parameter error can be 
carried out by referring to the PDI size of random forest.  

IV. EXPERIMENT AND RESULT 

In this section, the sensitivity analysis method based on RF is 
adopted to calculate the PDI of the geometric parameter error of 
the robot, and select the geometric parameter error of high 
sensitivity which has a great influence on the robot position 
error. 

A. Experiment 

First, the forward kinematics simulation program of IRB 
2400 robot was written to calculate the corresponding 
homogeneous transformation matrix between each link, and the 
homogeneous transformation matrix was sequentially right 
multiplied to obtain the homogeneous transformation matrix 
from the robot base frame to the robot working frame, and then 
the kinematic model of the robot was established by calculating 
the position of the robot after its motion based on the position 
information before the robot works. The initial position of the 
robot was set with the base coordinate system, and the nominal 
MD-H parameters of the robot were input to obtain the robot's 
workspace and defined the common workspace of the robot. In 
this paper, the rectangular space with robot end position 
coordinates x, y, and z in the interval [300,1000], [-750,750], and 
[85,1550], respectively, was selected as the common workspace. 
For the IRB 2400 robot, the values of the nominal geometric 
parameters are shown in Table I. 
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TABLE I.  NOMINAL GEOMETRIC PARAMETERS OF THE  ROBOT 

Link i ai-1 / 
mm 

di / mm αi-1 / (°) θi / (°) 
Range of
θi 

βi / (°) 

1 100 615 -90 0 -180~180 - 

2 705 0 0 -90 -100~110 0 

3 135 0 -90 0 -60~65 - 

4 0 755 90 0 -200~200 - 

5 0 0 90 180 -120~120 - 

6 0 85 0 0 -400~400 - 

Second, based on the kinematic model of IRB 2400 robot, 
the robot geometric parameter error was defined, and the actual 
end position of the robot was obtained by inputting the actual 
MD-H parameters and substituting them into the robot 
kinematic program, and the difference between it and the ideal 
end location of the robot corresponding to the nominal MD-H 
parameters was the robot end position error, thus establishing 
the robot kinematic position error model. 

Third, 200 sampling points were randomly chosen from the 
common workspace of the robot, and the 25 nominal geometric 
parameters corresponding to each working point were recorded. 
The error range of the 25 geometric parameters of the IRB 2400 
robot was set, and the program of LHS method was written to 
generate the error data of the robot geometric parameters by 
substituting the error range of the geometric parameters. The 
error data and nominal parameters were used in the error model 
to determine the robot’s positional errors at the sampling points. 

Finally, the above error data were used as input variables, 
and the position errors and absolute position errors in the x, y and 
z directions were used as corresponding outputs to train four 
random forest models. When all the random forest models with 
200 sampling points were trained, the mean value of PDI of 200 
sampling points was taken, and the size of PDI would represent 
the error sensitivity of the geometric parameters of the robot, 
which determined the result of this random forest sensitivity 
analysis. Based on the results of the geometric parameter error 
sensitivity analysis, the error source with high sensitivity was 
selected. 

B. Result Analysis 

The geometric parameter errors and position errors of the 
sampling points are taken as input variables and corresponding 
outputs, respectively, and the training set is used to train the 
random forest model. After the training, the PDI of 25 geometric 
variable errors are shown in Table Ⅱ and Fig. 4 below. 

By analyzing Table Ⅱ and Fig. 4, it is clear that geometric 
parameter errors greatly affect the end position error of IRB 
2400 robot are δα2, δα3, δθ1, δθ2, and δθ3. δα2, δα3, δθ1, δθ2, and 
δθ3 are all angular errors. Therefore, the high sensitivity 
geometric parameter errors that affect the end position error of 
IRB 2400 robot are δα2, δα3, δθ1, δθ2, and δθ3, and the correction 
of the above five parameters should be focused on in the precise 
design of the robot to achieve a better accuracy compensation 
effect. 

 

TABLE II.  PDI  OF GEOMETRIC PARAMETER ERROR 

Error δa1 δa2 δa3 δa4 δa5 δa6 

PDI 0.0356 0.0403 0.0454 0.0419 0.0356 0.0389 

δd1 δd2 δd3 δd4 δd5 δd6 δα1 

0.0410 0.0420 0.0422 0.0308 0.0432 0.0353 0.0334 

δα2 δα3 δα4 δα5 δα6 δθ1 δθ2 

0.0726 0.0991 0.0036 0.0010 -0.0065 0.0789 0.1036 

δθ3 δθ4 δθ5 δθ6 δβ   

0.1015 0.0030 0.0035 -0.0067 0.0378   

 

Fig. 4.  Geometric parameter error sensitivity analysis results 

V. VERIFICATION OF THE SENSITIVITY ANALYSIS METHOD 

In order to confirm the correctness of the sensitivity analysis 
and whether the precision design mainly for the high sensitivity 
error source can improve the absolute positioning accuracy of 
the robot, the results of the sensitivity analysis need to be 
further verified. The validation procedure was mainly done by 
setting up a control group, one group for high sensitivity error 
sources and the other group for non-high sensitivity error 
sources, to compare the degree of improvement in the end 
position error of the two robots. 

 200 working points were randomly selected from the 
common working space again, and 25 nominal geometric 
parameters corresponding to each working point were recorded. 
In order to express the difference in the effect of accuracy 
design on different error sources, the geometric parameter 
errors were divided into four control groups according to the 
degree of influence of the geometric parameter error sources on 
the end position error of the robot, and the error values of 
several of the corresponding geometric parameters were 
reduced to simulate the accuracy design for high sensitivity 
geometric parameters. Then, using the robot’s error model, the 
positional error for each control group’s geometric parameter 
errors was calculated. Finally, the sensitivity analysis was 
verified by comparing the mean and maximum values of each 
group’s position errors. The initial values of geometric 
parameter errors defined in this paper are shown in Table Ⅲ.  

TABLE III.  THE INITIAL VALUE  

Error δai / (mm) δdi / (mm) δαi / (°) δθi / (°) δβ / (°) 

Initial 
Value 

0.4 0.4 0.05 0.05 0.05 
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Group S was set as the control reference group, and groups A, 
B and C were set as the experimental group. Group S does not 
change the initial geometric parameter error. Group A only 
changes the geometric parameter errors of the high sensitivity 
(δα2, δα3, δθ1, δθ2, and δθ3) by adjusting the errors to 10% of the 
initial errors, and the remaining geometric parameter errors 
remain unchanged. Group B only changes the geometric 
parameter errors of the non-high sensitivity (except for δα2, δα3, 
δθ1, δθ2, and δθ3) by adjusting the errors to 10% of the initial 
error. The remaining geometric parameter errors remain 
unchanged. Group C adjusts all geometric parameter errors to 
10% of the initial error. By substituting the errors 
corresponding to the above geometric parameters into the robot 
kinematic error model, the mean value and maximum value of 
the robot terminal position errors corresponding to each group 
can be calculated. The test results are shown in Table Ⅳ and 
Fig. 5.  

As can be seen from Table Ⅳ and Fig. 5, the position errors 
of the robots in the three experimental groups ABC are all 
reduced compared with those in group S. The mean position 
error (MPE) of group A relative to group S decreased from 
2.3892mm to 1.4942mm, an increase of about 37.46%. The 
MPE of group B relative to group S decreased from 2.3892mm 
to 1.6704mm, an increase of about 30.09%. The MPE of group 
C relative to group S was reduced from 2.3892mm to 
0.2388mm, an increase of about 90.00%. From the 
experimental results, it can be seen that the mean position error 
improvement rate(Pa) of group C is larger than that of groups A 
and B. This indicates that the accuracy design for all geometric 
parameter errors can reduce the position error of the robot. Pa 
of group A is higher than that of group B.  Therefore, precision 
design for geometric parameter errors with high sensitivity can 
improve the positioning accuracy of the robot more effectively 
than that for geometric parameter errors with non-high 
sensitivity. 

TABLE IV.  ANALYSIS RESULT OF POSITION ERROR OF EACH GROUP 

Group MPE/mm (PE)max/mm Pa 

S 2.3892 4.2484 0% 

A 1.4942 2.9489 37.46% 

B 1.6704 2.9513 30.09% 

C 0.2388 0.4247 90.00% 

 

Fig. 5.  Mean position error(MPE)and improvement rate(Pa) of each group 

Although the best improvement in robot positioning 
accuracy was achieved in experimental group C, this group 
reduced all the geometric parameter errors at a cost that was too 
high to be realistic. In the actual accuracy design, more 
estimates are needed for the cost of reducing errors in geometric 
parameters. In order to more clearly represent the effect of cost 
improvement in accuracy when considering the improvement of 
error sources, the accuracy improvement to cost ratio (ICR) is 
introduced, and the ICR metric is defined as follows: 

 
Pa

ICR
Pc

  (11) 

Where Pa refers to the reduction in the mean position error of 
the robot relative to the initial group (group S) as a proportion 
of the position error of the initial control group after each group 
accuracy design, and is also called the mean position error 
improvement rate; Pc refers to the ratio of the number of 
adjusted geometric parameter errors to the total number of 
geometric parameter errors. If the value of ICR is larger, it 
means that the group can spend less to achieve a larger 
improvement in positioning accuracy, and the accuracy design 
will be better. After the calculation of ICR for each 
experimental group, the results can be obtained as shown in 
Table Ⅴ and Fig. 6. 

TABLE V.  THE PA, PC AND ICR VALUES OF EACH GROUP 

Group Pa Pc ICR 

A 37.46% 20% 1.873 

B 30.09% 80% 0.376 

C 90.00% 100% 0.900 

 

Fig. 6.  The accuracy improvement to cost ratio(ICR) of each experimental 

group 

Pa of group A relative to group S was 37.46%. The robot has 
a total of 25 geometric parameter errors, and group A only 
changes 5 of the high sensitivity geometric parameter errors 
(δα2, δα3, δθ1, δθ2, and δθ3), so the Pc of group A is 5/25 = 20%. 
Pa for group B relative to group S was 30.09%. Group B 
changed 20 non-highly sensitive geometric parameter errors, 
accounting for about 80% of all geometric parameter errors. 

1139



  

Similarly, the Pa of group C relative to group S is 90.00%. 
Group C changes all the geometric parameter errors, so the Pc 
of group C is 100%. 

According to Table Ⅴ and Fig. 6, the ICR of the high 
sensitivity geometric parameter error source for the robot end 
position is 1.873, while the ICR of the non-high sensitivity 
geometric parameter error source for the robot end position is 
0.376. The ICR of all geometric parameter errors on the robot 
end position is 0.900. The ICR of high sensitivity geometric 
parameter error sources on the robot end position error is the 
largest. 

The high sensitivity geometric parameter error ICR is about 
4.98 times that of the non-high sensitivity geometric parameter 
error, indicating that the cost of precision design for the 
non-high sensitivity geometric parameter error is 4.98 times 
that of precision design for the high sensitivity geometric 
parameter error. Therefore, group A can greatly improve the 
positioning accuracy of the robot by reducing fewer geometric 
parameter errors. However, group B needs to reduce more 
geometric parameter errors to achieve the same effect as group 
A with a small reduction of errors. 

The ICR of high sensitivity geometric parameter error is 
about 2.08 times of the ICR of all geometric parameter errors, 
and it is known that the cost of accuracy design for all 
geometric parameter errors is 2.08 times of the accuracy design 
for high sensitivity geometric parameter errors. Therefore, 
although the accuracy design for all geometric parameter errors 
can improve the robot positioning accuracy, it is more costly 
and less cost-effective. Therefore, the accuracy design of only 
the high sensitivity geometric parameter errors can not only 
improve the positioning accuracy of the robot, but also has a 
lower cost and high cost performance. 

In summary, the RF-based sensitivity analysis method for 
geometric parameter errors is feasible, and the results of the 
sensitivity analysis are fully applicable to the accuracy design 
of the IRB 2400 robot. δα2, δα3, δθ1, δθ2, and δθ3 are highly 
sensitive error sources for the IRB 2400, and have a greater 
impact on the robot end position error than other geometric 
parameter error sources. Therefore, more attention needs to be 
paid to high-sensitivity geometric parameter error sources 
during accuracy design, which can substantially improve 
positioning accuracy at less cost. Simulation experimental 
results show that sensitivity analysis of geometric parameter 
error sources can improve the robot end positioning accuracy, 
which verifies the correctness and effectiveness of the method 
in this paper. 

VI. CONCLUSION 

In this paper, the IRB 2400 6-DOF series robot is taken as the 

research object, and the position error model of the robot is 

established on the basis of the robot kinematic model, which 

lays an important foundation for the subsequent sensitivity 

analysis. A RF-based sensitivity analysis method for geometric 

parameter errors of tandem robots is proposed. The sensitivity 

analysis of the geometric parameter errors of the robot is carried 

out using RF, from which the highly sensitive sources of 

geometric parameter errors are selected. A simulation 

experiment with and without precision design is conducted to 

verify the proposed method. The results show that, focusing on 

the optimization of high-sensitivity geometric parameter errors 

in the accuracy design of industrial robot can effectively 

improve the effectiveness of the accuracy design and 

significantly improve the positioning accuracy of the robot. 

ACKNOWLEDGMENT 

The authors are grateful to the financial sponsorship from 
the Shanghai Sailing Program (Grant No. 22YF1412800). 

REFERENCES 

[1] D. Chen, P. Yuan, T. Wang, C. Ying, and H. Tang, “A compensation 
method based on error similarity and error correlation to enhance the 

position accuracy of an aviation drilling robot,” Measurement Science and 

Technology, vol. 29, no. 8, p. 085011, 2018. 
[2] J. Li, F. Xie, and X.-J. Liu, “Geometric error modeling and sensitivity 

analysis of a five-axis machine tool,” The International Journal of 

Advanced Manufacturing Technology, vol. 82, no. 9, pp. 2037-2051, 2016. 
[3] Y. Liu, D. Fei, D. Li, Y. Wu, and W. Bo, “Machining accuracy 

improvement for a dual-spindle ultra-precision drum roll lathe based on 

geometric error analysis and calibration,” Precision Engineering, vol. 66, 
pp. 401-416, 2020. 

[4] H. Christopher Frey and S. R. Patil, “Identification and review of 
sensitivity analysis methods,” Risk analysis, vol. 22, no. 3, pp. 553-578, 

2002. 

[5] O. Tsvetkova and T. Ouarda, “A review of sensitivity analysis practices in 
wind resource assessment,” Energy Conversion and Management, vol. 238, 

no. 2, 2021. 

[6] S. Kaizerman, G. Zak, B. Benhabib, and R. G. Fenton, “A Sensitivity 
Analysis Based Method for Robot Calibration,” Journal of Mechanical 

Design, vol. 116, no. 2, pp. 607-613, 1994. 

[7] J. Li, F. Xie, X.-J. Liu, B. Mei, and H. Li, “A spatial vector projection 
based error sensitivity analysis method for industrial robots,” Journal of 

Mechanical Science and Technology, vol. 32, no. 6, pp. 2839-2850, 2018. 

[8] B. Iooss and P. Lemaître, “A review on global sensitivity analysis 
methods,” Uncertainty management in simulation-optimization of complex 

systems, pp. 101-122, 2015. 

[9] A. Antoniadis, S. Lambert-Lacroix, and J. M. Poggi, “Random forests for 
global sensitivity analysis: A selective review,” Reliability Engineering 

and System Safety, vol. 206, 2021. 

[10] J. Denavit and R. S. Hartenberg, “Notation for lower-pair mechanisms 
based on matrices,” Journal of Applied Mechanics, vol. 22, no. 2, pp. 

215-221, 1995. 

[11] M. Shields and J. Zhang, “The generalization of Latin hypercube 
sampling,” Reliability Engineering & System Safety, vol. 148, pp. 96-108, 

2016. 

[12] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5-32, 
2001. 

[13] D. S. Palmer, N. M. O'Boyle, R. C. Glen, and J. B. Mitchell, “Random 

forest models to predict aqueous solubility, ”  Journal of chemical 

information and modeling, vol. 47, no. 1, pp. 150-158, 2007. 

[14] S. Song and R. He, “Importance measure index system based on random 

forest,” Journal of National University of Defense Technology, vol. 43, no. 

2, p. 8, 2021. 

 

1140


