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Abstract—Rotary to translational transmission systems play an 
important role in many applications from engineering to human 
assistance devices. Although lead and ball screws are widely 
available, they suffer mechanical wear/tear problems due to 
contact friction.  Motivated by increasing demands for energy-
efficient mechanisms for mobile and wearable robotic systems, this 
paper presents an analytical method to design a magnetic-
leadscrew (MLS) with embedded sensing. MLS is driven by 
permanent magnets (PMs) converting magnetic energy to thrust 
forces while transmitting the rotary-to-translation motion. 
However, existing designs generally assume an infinitely long 
MLS, so its magnetic field distribution is axisymmetric and 
periodic. To relax these assumptions for applications that require 
maintaining a constant lead over a short travel, the paper 
formulates the magnetic field and radial/thrust forces of an MLS 
in closed form using a distributed current source (DCS) method 
for developing MLS with an embedded field-based sensing system. 
The sensing method determines the unique solution to the inverse 
magnetic field model and measures the translation and rotation 
independently. With the DCS models, a parametric study has been 
conducted numerically leading to the development of a prototype 
PM-driven MLS with embedded sensing, upon which the magnetic 
field model, sensing system, and algorithm are numerically 
illustrated and experimentally validated.   
Index Terms— Magnetic leadscrew, electromagnetics, sensor, 

helical magnetic field, force model, permanent magnet.  

I. INTRODUCTION 

Linear actuators providing thrust forces and displacements 
are widely used in many robotic applications ranging from 
manufacturing, automotive, and aerospace industries [1][2] to 
emerging fields, particularly the increasing demands for human 
assistance devices and rehabilitation exoskeletons [3][4] where 
compliance must be appropriately designed to accommodate 
natural variations within human joints. Mechanical lead and 
ball screws that take advantage of low cost highly efficient 
electric motors to convert rotation-to-translation motions are 
commonly used with a built-in spring mechanism; however, 
their performances are limited by common wear/tears between 
moving contact elements and their accompanied backlash and 
other nonlinear uncertainties. To overcome problems associated 
with mechanical spring-loaded leadscrews (for example, 
vehicle active suspension system [5]), a magnetic leadscrew 
(MLS) composed of helical-shaped PMs in the translator and 
rotor has been employed as an alternative for its high force 
density and energy efficiency. Recent research has continued to 
demonstrate promising properties of magnetic lead screws for 
applications such as a wave energy converter [6] designed to 
harvest energy from ocean wave motion.  Compared with its 

mechanical counterparts, PM-driven MLS has the merits of 
inherent overload protection, minimal friction, and a low need 
for maintenance because of contact-free transmission via a 
magnetic field; more importantly, it offers natural compliance 
by the virtue of the magnetic repulsion between the embedded 
PMs that requires no external power but can be externally 
controlled by its motorized driver.   However, the potentials of 
MLS have been underexploited due to the lack of effective 
modeling methods and embedded sensors to analyze its 
magnetic fields and forces for applications (requiring a short-
travel range but precision force and motion control are of 
interest), where the end effects on the radial and thrust forces 
may not be neglected. For example, the MLS is part of a linear 
force controllable actuator in [7] and a series elastic actuator in 
[8], which must be capable of fine manipulation.  For this 
reason, this paper presents an analytical method to design MLS 
with embedded sensing and understand its parametric effects on 
dynamic behaviors for motion control. 

The analytical solutions to the magnetic flux density (MFD) 
and thrust force of an ideal MLS have been first presented in 
[9] with two main assumptions; 1) the axial length is infinite so 
that the MFD field distribution is axisymmetric and periodic; 
and 2) the armature is slot-less and the permeability of the iron 
is infinite so that the magnetic field and force problems can be 
reduced to two-dimensional. With these assumptions, the 
analytical solutions were validated in [9][10] with data 
simulated using the finite element method (FEM) and used in 
the design of an MLS-based active suspension system for 
vehicles [11] and more recently for design optimization of an 
MLS with helical PM-poles [12]. Although the commercially 
available FEM is a widely used numerical tool to analyze and 
optimize designs with complicated topologies, it must enclose 
relatively large airspace around the magnetic structure being 
analyzed. As a result, the FEM solutions to an electromagnetic 
model are less computationally efficient and generally prone to 
numerical errors [13][14] than the analytical solutions which 
are, unfortunately, limited to problems with simple geometry.  
To take the advantage of both the FEM and analytical solutions, 
the distributed current source (DCS) method first proposed in 
[15] discretizes the electromagnetic structure into elemental 
volume and/or surface current sources without the need to 
enclose the surrounding airspace and solves for its solutions in 
a closed form. The DCS models formulated using physical 
variables are useful as a design tool for optimizing various types 
of actuators [16], developing magnetic sensors [13], and 
analyzing the parametric effects on eddy-current sensing [14].  

To relax the assumptions commonly made in the traditional 
analyses of an MLS, this paper presents an analytical DSC 
method to model the MLS’s magnetic field/forces, and an 
embedded sensing system utilizing the existing magnetic fields 
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to measure its rotational and translational displacements of the 
MLS.  The remainder of this paper offers the following:  
 Section II formulates the magnetic fields of an MLS using a 

DCS method for computing its radial/thrust forces in closed 
form and for sensing its rotational and translational motions. 
The DCS models relax some common assumptions; for 
example, negligible end effects and ideal “gear ratio”.  

 To gain insights into an MLS design for short-length 
applications, Section III presents three numerical studies: the 
first analyzes the end effects on the MLS using the DCS-
based force model. The second investigates the parametric 
effects of the magnetic models on the field-based sensor 
design. The third presents a three-step algorithm to determine 
the unique solution to the inverse magnetic field model and 
measures the translational/rotational displacements.  

 Based on the DCS models without assuming an ideal “gear 
ratio” and magnetization, Section IV presents the 
development of a prototype MLS with embedded sensing and 
experimental validation of the field-based sensing method. 

II. ANALYTICAL MLS MODELS 

Figure 1(a) defines the coordinate frames, components, and 
parameters for design and modeling a magnetic leadscrew 
(MLS) with an embedded sensing system, where XYZ is a world 
(reference) frame and xryrzr and xtytzt are the local coordinate 
frames of the rotor (radius rr) and the translator (radius rt), 
respectively; and the (zr, zt) axes are aligned with the Z axis. As 
the screw rotates (angle the translator moves (displacement 
z) from its initial position z0 along the rotating axis. 
Traditionally, the MLS design assumes a position-invariant 
“gear” ratio /z(=2/) which indicates z traveled by  as  
rotates by 2 during the rotary-to-translation transmission. 
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Figure 1. Schematic of Magnetic leadscrew (MLS). (a) Coordinate systems. (b) 
PM geometry. (c) Leadscrew parameters. 

As shown in Fig. 1(b) where the circumferential surfaces of 
the rotor and the translator are separated by an airgap gr, (Nr, Nt) 
permanent magnets (PMs) are surface mounted on the (rotor, 
translator) along a helix (pitch ). The PMs with axial 
magnetization M (Fig. 1c) are in pairs separated by a gap of 
2gz and, without loss of generality, they are assumed to have a 

cylindrical geometry (radius rp and thickness 2hp) in the 
following discussion.  For a complete helix that has N PM-pairs, 
the (position pcl, magnetization ncl) vectors of the lth PM-pair 
have the form in the local coordinates in (1a, b) where the 
subscript c (= r or t) denotes the (rotor or translator):   

 
 
 

 
 

cos cos
sin  and sin

0/

c

cl c cl

p z

r l l
r l l

r gl N

 
 




   
    
       

p n  (1a, b)  

 
 

0,1, , 1 Rotor      
0,1, , 1 Tr t

2
 

o
and 

ansla r
r

t

i N
l

NN j
     



 .  (1c)  

For analyzing the magnetic system, the cylindrical PM 
(magnetization M = M0ncl) in the air is modeled as a surface 
current density (SCD) K source to account for its boundary 
effect, which can be computed from the cross-product of the 
circumferential surface-normal ns and M, providing a basis to 
solve for the MFD of the PM-pairs in a closed form using the 
DCS method [15] which decomposes the PM’s circumferential 
surface (aS=4hprp) into NK SCD kk elements (each with an area 
ak=as/Nk where k =1, 2, …, Nk).  Its MFD can then be computed 
by superposition reducing the computing of the Biot-Savart 
surface integral to a summation.   

In XYZ coordinates, the DCS-modeled MFD Bi of the lth 
PM-pair at a point P is given by (2a~g) where the subscribes  
denote the M and the position vector Plk locates the kth 
elemental SCD Kik of the lth PM-pair:  
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In (2c), the position vector Pcl can be described by (3a, b) 
where the local coordinates pri and ptj are given by (1a~c): 
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To facilitate design, the geometrical parameters are 
normalized to the PM radius rp in (4a~e): 
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For consistency, the position vectors, MFD, SCD, and force are 
normalized accordingly in (5a~d) where (Bo, fo) are defined in 
(5e, f) and o is the permeability of free space:  
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With the normalized parameters and variables defined in 
(4a~e) and (5a~d), the force models and magnetic field for 
designing an MLS and its embedded sensor are described in 
Sections II.A and II.B, respectively.    

A. Magnetic Force Model of the MLS 
Using the DCS models (2a~g), the volume integral for 

calculating the Lorentz force exerted on the translator reduces 
to a summation of elemental cross-products (KtK Br) over the 
NK elements. For clarity, the indexes (K, k) are used to indicate 
the SCD elements of the (rotor, translator). Since the SCD 
vector Ktk is directly used in the rotor field Br, it is not necessary 
to compute the MFD generated by the current loop. In the XYZ 
coordinates, the normalized magnetic force acting on the 
translator (consisting of Nt PM-pairs) can be computed from the 
sum of the individual forces given by (6a, b): 
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As illustrated in Fig. 2, the denominators in (6b) are the 
distances (7a, b) between the jth translator and ith rotor PM-pairs:  
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In (7a, b), the subscripts [(++ and  (+ and indicate the 
magnetization vectors of the PM-pairs contributing to 
[repulsive, attractive forces. Since the magnetization vectors of 
both the rotor PMs and translator PMs are radially pointing in 
the XY plane, the line connecting the two centers of the jth 
translator PM-pair is always parallel to that of the ith rotor PM-
pair. Hence, the two lines between the (jth translator and ith 
rotor) PMs with M+ and that with M, which contribute to 
repulsive forces, are parallel and have equal lengths: 
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The numerators in (6a, b) can be written as dot products (8a) 

in terms of that have the properties given by (8b~e): 
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For compactness and gaining physically intuitive insights 

into the magnetic forces (6a) can be written as (9a~e):  
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Using the properties (8b~d), (9a) can be expressed as 
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The model (10a~f) provides the basis to analyze the effects 
of the MLS parameters, (rp, hp; Mo), (rt, rr, gz, ) and the 
magnetic lead z0 (Fig. 1b), on the force f;  a good understanding 
is essential to maintain a position-invariant gear ratio for rotary-
to-translation transmission while minimizing the radial force.  
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Fig. 2 Schematics illustrating the elemental force model (6a). 

B. Translator MFD Models for Embedded Motion Sensing 

For (Z, motion sensing of the MLS, the embedded motion 
sensing system measures the translator MFD obtained by 
subtracting the rotor MFD from measurements.  As in (6b), the 
MFD field of the translator-PMs at the sensing point sP  can be 

computed from the cross-products over the Nk elements, which 
can be rewritten in normalized form as 
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where “  ” represents (  and )k kC Sj j  and (  and )k k k kC z S zj j in 

the 1st and 2nd terms in (14), respectively.  Each summation in 
(12) can then be compactly written as   

   
 
   

22

2

22

2

    2

   2 1

s cl ks cl s cl

l k l ks cl s

l k l ks cl s c k

CZ Z z Z Z z

S S C zX x X

C S S zY y Y z

j

 j 

 j  

  
            

    
      

P P

 (13) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

 

 

1

and ,

( )
( )

( )
    

1 ( ) 0
( ) 1 0      
0 0 ( ) 1

KN

lk s lk
k

clj l k

clj l k

l k cl

l k k l

l k k l

l k k

X xS C
Y yC C

S Z Z z

S z C
S z S

C z

 j

 j

j

j 

j 

j

 






 







   

    
                                   

 B P P

skew  (14) 

Based on (14), the sensors are located at Ps(Xs=0, Ys=0, Zs) 
along the rotor centerline to determine the axial displacement.  
From (12) to (14), the following observations can be made:  
1) The dominator of (12) reduces to 
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2) Since    sin sink kj j   and    cos cosk kj j  ,  
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3) The translator MFD measured by the magnetic sensors at 
Ps(Xs=0, Ys=0, Zs) depends only on the displacement Z: 
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The above observations suggest that Z can be measured from 
the Z-component of Bt (16a, b) assuming rt hp for simplicity:   
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III. PARAMETRIC ANALYSES  

The magnetic force and MFD field models (6a, b) for design 
analyses of the MLS and its embedded sensing system are best 
illustrated numerically.  For a given rotor radius rr and PM (rp, 

hp), the N PM-pairs (in a helical cycle with pitch ) housed 
within the translator radius rt with a rotor-translator airgap gr 
(Fig. 1b) are constrained by (17a~c):  

 /floor r pr rN  ;  4 1 z    (17a, b)  

and  2t r p g       (17c) 
The nominal design, along with the values used in the studies, 

is given in Table I.  Three numerical studies are conducted: 
Section III.A illustrates the principle and model of an MLS by 
simulating the parametric effects on its radial and axial (thrust) 
forces; the results reveal the end effects by relaxing the common 
assumption (18) and determining the optimal z0. Section III.B 
analyzes the parametric effects on the MFD field of the 
translator PMs, which provide the theoretical basis to design an 
embedded sensing system for the MLS. Section III.C presents a 
method to determine the unique solution to the inverse 

translator-MFD model for measuring Zand independently.  

TABLE I. Nominal values used in simulations 
PM: rp = 4.76mm, p=1/6; Mo=1.3T. 

MLS: r = 3, t = 3.73, z = 0.17,  = 6. N = 8,Nt /N = 1, Nr /N = 4, z0/rp =1 

Sect. (Fig.) Values used in the parametric studies 
A(Fig. 4) rp = 9.53mm, p=1/6; rp = 6.35mm, p=1/4;  

rp = 4.76mm, p=1/3, 2/3, 4/3 
A (Fig. 5) Nt=N, Nr /N = 4, 8. 
B (Fig. 6) 6c: t = 3.23, 3.73, 4.23, 4.73;  = 4, 6, 9. 6d:  = 5, 6, 7. 

A. Parametric Effects on Magnetic Thrust Force  

 Traditionally, the MLS force is derived assuming (18) that 
generally neglects the end effects by allowing  : 
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2
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f f   (18) 

To gain insights into the end effects of an MLS design with a 
short operating length, the end effects on the MLS are analyzed 
using the force model (10a~f).  

Consider the j=0th translator PM-pair initially aligning with 
the i=0th rotor PM-pair. The translator PM-pairs travel along the 
Z axis and sequentially align with an equal number of rotor PM-
pairs as the latter rotates. After translating /z N  or Z=z+z0 

(Fig. 1b), the j=0 translator-PMs align with the th  rotor-PMs 
while rotating     as viewed by the translator, which can 

be described in the XYZ frame as  
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As seen in (19a, b), the relative displacement between the j=0th 
translator-PM and th rotor-PM in the axial direction depends 
only on the magnetic lead z0, which governs the thrust force (6a, 
b).  Figures 3 to 5 summarize the results of the numerical study 
to determine an optimal magnetic lead z0 that maximizes the 
axial force while minimizing the radial force.  

Figures 3 and 4 analyze the effects of the magnetic lead z0 on 
f0(Z=z0; z= =0).  The (top, middle, bottom) plots of Fig. 3 
graph the individual (fX, fY, fZ) component forces contributed by 
each of the translator PMs, where the (left, right) plots 
correspond to the PM with (M+, M). Figure 4 analyzes the 
effects of the PM aspect ratio p and the PM-pairs/helix N on 
the axial and radial forces.  Based on (10a~f) that relax the 
commonly made assumption (18), the (fX, fY) acting on the jth 
PM-pair and that on the (j+N/2)th PM-pair in the presence rotor-
MFD Br field are nearly equal and opposite to each other for 
any z0 as shown in the 1st and 2nd rows of Fig. 3.  In contrast, the 
jth and (j+N/2)th PM-pairs contribute nearly identical fZ in both 
magnitude and direction as shown in the 3rd row of Fig. 3 where 
all the eight (j = 0, …,7) individual contributions collapse 
approximately onto a single curve; the latter indicates that the 
magnetic force on the jth PM-pair is not significantly influenced 
by other translator-PMs except its immediate neighbors. As a 
result, the net force f0 is primarily axial and peaked near z0/rp=1 
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5

(Fig. 4b) with a small but non-zero radial force (Fig. 4a). Based 
on the parametric studies, N=8, rp = 4.76mm and p=1/6 are 
chosen as optimal values in the subsequent studies.  As revealed 
in Figs. 4(a, b), an increase in rp for a given (rr, hp) or in hp for 
a given (rr, rp) will result in a smaller thrust force since an 
increase in the PM radius rp for a specified rotor radius rr can 
be achieved but at the expense of reducing N or the number of 
PMs in one helix cycle (17a).  
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Fig. 3. Forces f0 contributed by each translator PM. Left: PM (M+). Right: PM 
(M). Top, middle, bottom rows: X, Y, Z component forces. 
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Fig. 5. End effects on the forces acting on the translator, Nt=N. (a) Net radial 
forces. (a) Net axial forces. 

Figure 5 illustrates the end effects on the radial and axial 
forces by comparing two different rotor lengths (characterized 
by Nr/N= 4 and 8 for a given Nt = N).  In both configurations, 
the radial forces are several orders smaller than their axial 
forces but nonzero at starting. For Nr/N, the axial force 

approaches a constant value after rotating 2 cycles (or 
translating 2). The unbalanced radial and axial forces can be 
observed after translating 2 for Nr/N=4; this is because an 
increasing number of the translator PMs will face air instead of 
rotor-PMs, where the magnitudes of the unbalanced forces 
depend on the PM aspect ratios and the magnetic lead (Fig. 4). 
For the selected design parameters, the unbalanced radial forces 
can be kept within 0.6N and axial forces within 2% variation of 
the nominal value of 32.55N over the range of 3. 

B. Translator MFD Field (Forward) Model  

To provide the theoretical basis to design an embedded 
sensing system for the MLS, the MFD field of the translator 
PMs is analyzed numerically. With t=3.73 and =6, the 
computed Bzj curves of each PM (j=0, 1, …, 7) with M+ are 
graphed in Fig. 6(a, top), which exhibit an identical shape but a 
phase difference of/Nt  between the jth and the (j+1)th PMs. As 
shown in Fig. 6(a, bottom) where the individual contributions 
from the (j=0)th PM-pair M and their sum are graphed, the two 
MFD curves are vertically symmetric with a phase difference 
of 2(rp+gz)/ geometrically designed for the MLS. The net 
MFD field of the N (=8) PM-pairs is compared in Fig. 6(b); 
contrasting Bzt, (Bxt, Byt) are non-symmetric.  

The (t, ) parametric effects on the net MFD field of the 
N=8 PM-pairs are illustrated on the (top, bottom) plots of Figs. 
6(c, d).  As shown in Fig. 6(c, top) and Fig. 6(d), the Bzt curves 
are symmetric with two local minimums at dl/ about the peak 
Bztj/B0 values at 0.4333(Z-Zs)/ and the distance dl/ increases 
with t. The effects of  on the peak Bztj/B0 values and the 
locations of the two local minimums at dl/ can be analyzed 
in Fig. 6(c, bottom) and Fig. 6(d).      

C. Embedded Sensing System based on Translator MFD  

The numerical findings in Section III.B provide a basis for 
designing an embedded sensing system for an MLS. Both the 
forward model (15c, d) and its inverse solutions are needed for 
designing an embedded field-based sensing system. While the 
former (Section III.B) offers a means to analyze the MFD field 
for a design, the latter that solves for the displacement from the 
MFD measurements must be computed in real-time, which are 
illustrated in Subsections C.1 (Figs. 6, 7) and C.2 (Fig.8).  

C.1 Inverse MFD model and its non-uniqueness  
Unlike the forward Bt model (Fig. 6b) which has a unique 

solution for a specified Z, the inverse solution that solves for the 
displacement Z from a single MFD (BtX, BtY, BtZ) measurement 
may not be non-unique. As an illustration, consider two sensors 
(S1 and S2, each monitoring a range of 1.8) are placed along 
the centerline defined by (20a, b): 
Zs1 = (0.9+0.43) =1.33Zs2 = (1.8+1.33) =3.13 (20a, b) 

The sensors rotate with the rotor about the Z-axis, which 
takes advantage of the symmetry and largest monotonic range 
of the Bzt curves (top right, Fig. 6) to cover a 3.6sensing range:  

2 2  where 1,  2sl xsl yslxy
B B B l    (21a) 

 
 

 
 

,
and  

,
xsl xtl

ysl ytl

B Z B ZC S
S CB Z B Z
 

 




            
. (21b) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6

0.6

1

1.2

0.8

1.4

0.0317

0.0237
0.0178
0.0135

(Bzt/B0)max t
3.23
3.73
4.23
4.73

0.85
0.90
0.95
1.00

dl/ 

-0.02

0.02

0.04

21012

0B
zt
/B

o

(a)
2rpgz/

0

0.005

0.005

B
zt

0/
B

o

j=0

21012
(ZZs)/

Sum

M+ 

M

(c)


0

0.01

0.02

0.03

0.04

0.05

0.6

0.8

0.04

0.03

0.02

0.01

0

0.05

(B
zt
/B

o)
m

ax

654
t = rt/rp

dl/ 

 5  7

(d)

-5

0

5
10
M+ 

(Outward) 

B
zt

j+
/B

o
0.005

0.005

0

j=0j=7 1...

t.75


/Nt(=N=8) (ZZs)/0.43

t=3.73 4

9



(ZZs)/

0.02

0.02

0.04

0

0.06

B
zt
/ B

o

21012
(ZZs)/

0.02

0

0.03

0.02

0.01

0.01

Bxt0/Bo

Bzt0/Bo

Byt0/Bo

(b)
Fig. 6 Translator PM magnetic fields.  (a, top) BtZ from individual PMs (j=0, 1, 
…, 7) with M+. (a, bottom) Individual (M+ and M) from the (j=0)th PM-pair 
and their sum. (b) Net MFD field of the N =8 PM-pairs. (c, d) Effects of (t, ) 
on Bzt, its peak values, and field distributions.   

(a)

(b) |Bs1|xy/Bo

|B
s2

| x
y/

B
o

110
Bzs1/Bo

B
zs

2/
B

o

  

21
0.01

0.02

(d)

(c)
1

S1

S2

0.03

0.02

0.01

0

0.01

(B
zs

1,
 B

zs
2)

/B
0

 0 2 3
(Zz0)/

1 2r1 r2

r1

r2

 



e
1.7104

1x10

(|B
s1

| xy
, |

B
zs

2| x
y)

/B
o

2

1 3
(Zz0)/

0.8

0.6

0

0.4

0.2

0
1 r1

2
 2 r2

1

2

r1

r2

r1

r2
2

1
r1

1

2

 




 

 
Fig. 7. Simulations illustrating the non-uniqueness of the solutions to the MFD 
model. (a) Axial components. (b) Radial components. (c, d) 3D view and its 
projection: (c) Bzs1 and Bzs2. (d) |Bs1|xy and |Bs2|xy. 

Although the (Bxsl, Bysl) components of the lth sensor depend 
on both (Z, ), the magnitude of radial component |Bsl|xy and the 
axial component Bzsl are preserved under rotation; the latter 
provides a means to decouple the measuring of the translation 
Z from that of the rotation . The “(S1, S2) measurements” are 
simulated to solve for the displacement Z in Fig. 7(a, b). To help 
visualize the non-uniqueness of the inverse solutions that solve 
for the normalized displacement (Zz0)/ from the (Bzs1, Bzs2)/Bo 
and/or (|Bs1|xy, |Bs2|xy)/Bo measurements, Figs. 7(c, d) present the 
inverse solutions to the MLS field model in 3D view and its 
projection on the measurement plane.  Figure 7 reveals three 
pairs of nonunique inverse-solutions (indicated as “squared 1”, 

triangled 2”, and circled 3”; in other words, two possible 
displacements for each of the three (Bzs1, Bzs2) pairs labeled as 
red-squares, blue-triangles, and green-dots, respectively. 

C.2 Measurement algorithm for embedded (Z, ) sensing  
To eliminate the ambiguity from the inverse solutions, the 

full motion range is divided into four domains (1, 2, 3, 4) 
based on  Bzs1+Bzs2)such that the inverse solution in each 
domain is monotonic and can be uniquely determined from the 
measured Bs1 and Bs2 using the three-step sensing algorithm 
(Fig. 8d) to independently measure Z and : 
Step 1:  determine the domain using logical deduction (Fig. 8b): 

If |Bs1|xy≥|Bs2|xy : if Bzs2≥e  1; else Bzs2<e  2. 
else |Bs1|xy<|Bs2|xy : if Bzs1<e  3; else Bzs1≥e  4. 

Step 2: determine Z from the calibrated curve (inverse model) 
within the domain found in Step 1 (Fig. 8b). 

Step 3: from the coordinate transformation (21b), 

1 1 2

1 2

1 1
tan tan ; 

2
 

xsl x

x

tl

y

s sxy xy

s sy xs y yl tl

B B
l

B B
B BB B

      
 


 (22) 

As illustrated in Fig. 8(c), the radial (Bxtl, Bytl) component of the 
lth sensor depends only on Z and thus serves as a reference to 
compute  from (Bxsl, Bysl). The sign (and hence uniqueness) of 
  in (22) is determined from the signed (Bxsl, Bysl) and (Bxtl, Bytl).  
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Fig. 8. Simulations illustrating the embedded sensing system. (a, b) Domain 
classification and inverse solutions based on  Bzs1+Bzs2). (c) Inverse 
solution. (d) Flowchart of the sensing algorithm. 

IV. EXPERIMENT RESULTS AND DISCUSSION 

Based on the parametric studies in Section III, a prototype 
MLS with embedded sensing has been designed (Fig. 9) and 
developed (Fig. 10). The rotor (Nr = 32 PM-pairs) is supported 
on two rotary bearings at both ends of the rotor, and the 
translator (Nt =N = 8 PM-pairs) slides along a pair of alignment 
rods in the bushing bearings. The PM-pairs are mechanically 
located so that the same magnetic lead between the rotor and 
translator can be maintained at both the start and the end of the 
travel to generate the positive (or negative) thrust force in the 
forward (or backward) direction (Fig. 9c) where the translator-
PMs are ahead by z0 relative to the corresponding rotor-PMs in 
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its motion direction. The characteristic parameters of the MLS 
and its embedded sensors, and the instrumentation used for the 
experimental studies are summarized in Table II. The results are 
presented in Section IV.A and discussed in Section IV.B.  
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driving motor
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Rotor shaft

Rotary bearings
(both ends)

RotorTranslator
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z0 
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.1

Embedded 
sensing system

S1 S2z0 

z0 
Sensor 
cables

Force direction 
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Fig. 9 CAD model of the prototype MLS. 
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S1  
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Fig. 10. Prototype MLS. (a) Overall view and rotor PMs.  (b) Translator PMs. 
(c) Embedded sensors. 

A. Experimental Results  

The study with results in Figs. 11~14 and Table III has a 
three-folded objective: The 1st verifies the DCS model by 
comparing its calculated MFD field B of a PM in the global 
coordinates with the Biot-Savart’s integral [15] and 
manufacturer’s experimental data [17] in Fig. 11 where % 
RMSE is the root-mean square error. The 2nd and 3rd calibrate 
and validate the embedded sensing system, respectively.  

The 2nd study calibrates the sensing system (Fig. 12a), where 
the two sets of three single-axis Hall-effect sensors (S1, S2) are 
fixed at Z = 1.33 and 3.13 on the centerline, each set 
measuring (Bsx, Bsy, Bsz) of the PMs positioned by a XYZ micro-
position stage. To cover the same MFD measuring range of the 
prototype MLS, two PMs with the same radius rp= 4.76mm but 
large aspect ratios are used in the calibration. During 
calibration, the measured output voltages (offset subtracted) of 
each sensor are digitized by an NI MyRIO and processed in NI 
LabVIEW, which are then linearly related to the MFD 
measured by a handheld Gaussmeter in Fig. 12(a). 
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Fig. 11. Comparison of DCS model with analytical solutions and 
manufacturer’s data (a) Coordinate systems.  (b) Results. 
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Fig. 12 MLS sensor calibration. (a) Experiment setup. (b) Results. 

Table II. Parameters of the MLS, embedded sensor, and testbed  
 Instrumentation Specification 
Gaussmeter 0-2400mT, Relative error: ±2% 
XYZ Stage (HTIMS502R) Range: 25.4mm. Resolution: 1m 
Rotary Stage (HTIMS502R) Range: 360.  Resolution: 1/60. 
Linear Meter Range: 25.4mm. Resolution: 2.54m  
Embedded sensors and DAQ  
MFD sensors (CYSJ166A) Range: 3T. Sensitivity 3.1~4.1mV/mT 
ADC (NI MyRIO) 12-bit Analog input (0 ~ 5V) 

Optimized MLS Geometry 
r = 3, t = 3.73, z = 0.17,  = 6. N = 8,Nt /N = 1, Nr /N = 4, z0/rp =1 
 

Table III: Experimental results 
Sensor calibration (at supply voltage: 5.83V) i H H HB m V c   (Fig. 12) 

Sensors X mHcH YmHcH ZmHcH 
S1 1.50.594 1.1541.4 0.901.049 
S2 1.0210.255 1.1190.72 0.92.57 

Domain curve fits: (Fig. 12c) 
Z(B) = c4B4 + c3B3 + c2B2 + c1B+ c0 

sxy mean, STD 
(Fig. 12e)

Curve 1 (C1): [0.040  0.054   0.009 0.006 0.001] Z=0.522
.410.50Curve 2 (C2): 1.020.050.0000.0000.000 

Curve 3 (C3): 1.910.070.000.0000.000 Z=2.3
.71.121Curve 4 (C4): 2.9170.0540.0440.0150.001 

Estimation error (Ave, SD, Max): 

zB  (mT):  S1(0.56, 0.18, 1.88); and S2 (0.40, 0.29, 1.99) 

Z


 : 0.050.00.14 



2 : 0.050.040.12 

The 3rd study validates the embedded sensing system for 
measuring Z on the setup shown in Fig. 13(a) where the 
measurements are digitized by MyRIO, analyzed via LabVIEW 
(Fig. 12a) and summarized in Figs. 13(b~e). The measured 
(Bzs1, Bzs2) are plotted in Fig. 13(b) over the 3 range in the step 
of 45 for =0 to 315, demonstrating the measured (Bzs1, Bzs2) 
do not depend on .  Their sums,  Bzs1+Bzs2), for domain 
classification are plotted in Fig. 13(c) where the DCS model and 
domain curve-fits (Table III) are compared with experimental 
data (0as an example). Figure 13(d) plots the (Bxs, Bys) 
components which depend on both the displacement and 
rotation for two angles (045).    Once Z is acquired, the 
corresponding (Btx, Bty) are computed to determine  (Fig. 13e).  

B. Discussion of Results  

The comparisons among the DCS model, integral 
solutions, and experimental data in Fig. 11, in general, show 
very good agreements. The %RMSE of the (BX, BY, BZ) relative 
to the experimental data and integral solutions are (3.55%, 
3.55%, 8.74%) and (1.91%, 1.91%, 1.71%), respectively. The 
experimental (BX, BY, BZ) data exhibit a slightly larger RMSE 
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than the integral solutions and the DCS model, suggesting that 
the actual PM properties are slightly different from the 
manufacturer’s specification assumed in the analytical models.   
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Fig. 13 Experiment Results. (a) Setup. (b) Bzs1, Bzs2. (c)  Bzs1+Bzs2. (d) Bxsl 
and Bysl where l=1 and 2. (e) Illustrative inverse solutions.  
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Fig. 14 Error quantification. (a) z-direction MFD error (b) Z- error. 

Figure 14(a) graphs the boxplots showing the (Ave, SD, 
Max) errors, where data were taken at 8 different angles at each 
Z/ location, from which the absolute sensing errors [|B|mT, 
Z//(2are statistically summarized in Table III. Fig. 
14(b) shows the displacement/rotation errors over the 3range.    
The displacement Z (Ave, SD, Max) errors are (5%, 6%, 14%) 
with its largest value at about 1.5, which are due primarily to 
the MFD sensing errors (Table III) and a small sensitivity of the 
MFD sensor at 1.5. Because the  sensing depends on the Z 
sensing, it is less accurate than the latter. Some discrepancies 
can also be observed in Fig. 13(e) where the radial (Bxtl, Bytl) 
component of the lth sensor depends only on Z and should 
appear on the circle for a specified Z; the radial variations from 
its mean are caused by sensor misalignments. The sensing 
errors can be reduced by improving the mechanical hardware 
alignments to ensure orthogonality and by employing MFD 
sensors that have a higher sensitivity and low sensing noise. 

 

V. CONCLUSION 

The modeling, design, and parametric studies of an MLS 
with embedded sensing have been presented. The MFD and 
force models of an MLS have been formulated in a closed form 
neither assuming an ideal gear ratio nor neglecting the end 
effects. The DCS model reveals that Bsz and |Bs|xy along the 
translator centerline are invariant to , which leads to the 
development of a prototype MLS with an embedded field-based 
sensing system and a 3-step algorithm to determine the 
uniqueness of the inverse solution for independently measuring 
Z and . The DCS models and sensor design have been 
experimentally validated. The comparisons between the DCS 
model and experimental data show excellent agreement. The 
(Ave, SD, Max) RMS errors of the absolute displacement and 
rotation estimation errors are 514 of the pitch , and 
5412of2respectively. 
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