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Advanced Intelligent Mechatronics (AIM)

Design and Parametric Analysis of a Magnetic Leadscrew

with an Embedded Displacement Sensor
Wenjing Li, Student Member and Kok-Meng Lee, Life Fellow, IEEE

Abstract—Rotary to translational transmission systems play an
important role in many applications from engineering to human
assistance devices. Although lead and ball screws are widely
available, they suffer mechanical wear/tear problems due to
contact friction. Motivated by increasing demands for energy-
efficient mechanisms for mobile and wearable robotic systems, this
paper presents an analytical method to design a magnetic-
leadscrew (MLS) with embedded sensing. MLS is driven by
permanent magnets (PMs) converting magnetic energy to thrust
forces while transmitting the rotary-to-translation motion.
However, existing designs generally assume an infinitely long
MLS, so its magnetic field distribution is axisymmetric and
periodic. To relax these assumptions for applications that require
maintaining a constant lead over a short travel, the paper
formulates the magnetic field and radial/thrust forces of an MLS
in closed form using a distributed current source (DCS) method
for developing MLS with an embedded field-based sensing system.
The sensing method determines the unique solution to the inverse
magnetic field model and measures the translation and rotation
independently. With the DCS models, a parametric study has been
conducted numerically leading to the development of a prototype
PM-driven MLS with embedded sensing, upon which the magnetic
field model, sensing system, and algorithm are numerically
illustrated and experimentally validated.

Index Terms— Magnetic leadscrew, electromagnetics, sensor,

helical magnetic field, force model, permanent magnet.

I. INTRODUCTION

Linear actuators providing thrust forces and displacements
are widely used in many robotic applications ranging from
manufacturing, automotive, and aerospace industries [1][2] to
emerging fields, particularly the increasing demands for human
assistance devices and rehabilitation exoskeletons [3][4] where
compliance must be appropriately designed to accommodate
natural variations within human joints. Mechanical lead and
ball screws that take advantage of low cost highly efficient
electric motors to convert rotation-to-translation motions are
commonly used with a built-in spring mechanism; however,
their performances are limited by common wear/tears between
moving contact elements and their accompanied backlash and
other nonlinear uncertainties. To overcome problems associated
with mechanical spring-loaded leadscrews (for example,
vehicle active suspension system [5]), a magnetic leadscrew
(MLS) composed of helical-shaped PMs in the translator and
rotor has been employed as an alternative for its high force
density and energy efficiency. Recent research has continued to
demonstrate promising properties of magnetic lead screws for
applications such as a wave energy converter [6] designed to
harvest energy from ocean wave motion. Compared with its
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mechanical counterparts, PM-driven MLS has the merits of
inherent overload protection, minimal friction, and a low need
for maintenance because of contact-free transmission via a
magnetic field; more importantly, it offers natural compliance
by the virtue of the magnetic repulsion between the embedded
PMs that requires no external power but can be externally
controlled by its motorized driver. However, the potentials of
MLS have been underexploited due to the lack of effective
modeling methods and embedded sensors to analyze its
magnetic fields and forces for applications (requiring a short-
travel range but precision force and motion control are of
interest), where the end effects on the radial and thrust forces
may not be neglected. For example, the MLS is part of a linear
force controllable actuator in [7] and a series elastic actuator in
[8], which must be capable of fine manipulation. For this
reason, this paper presents an analytical method to design MLS
with embedded sensing and understand its parametric effects on
dynamic behaviors for motion control.

The analytical solutions to the magnetic flux density (MFD)
and thrust force of an ideal MLS have been first presented in
[9] with two main assumptions; 1) the axial length is infinite so
that the MFD field distribution is axisymmetric and periodic;
and 2) the armature is slot-less and the permeability of the iron
is infinite so that the magnetic field and force problems can be
reduced to two-dimensional. With these assumptions, the
analytical solutions were validated in [9][10] with data
simulated using the finite element method (FEM) and used in
the design of an MLS-based active suspension system for
vehicles [11] and more recently for design optimization of an
MLS with helical PM-poles [12]. Although the commercially
available FEM is a widely used numerical tool to analyze and
optimize designs with complicated topologies, it must enclose
relatively large airspace around the magnetic structure being
analyzed. As a result, the FEM solutions to an electromagnetic
model are less computationally efficient and generally prone to
numerical errors [13][14] than the analytical solutions which
are, unfortunately, limited to problems with simple geometry.
To take the advantage of both the FEM and analytical solutions,
the distributed current source (DCS) method first proposed in
[15] discretizes the electromagnetic structure into elemental
volume and/or surface current sources without the need to
enclose the surrounding airspace and solves for its solutions in
a closed form. The DCS models formulated using physical
variables are useful as a design tool for optimizing various types
of actuators [16], developing magnetic sensors [13], and
analyzing the parametric effects on eddy-current sensing [14].

To relax the assumptions commonly made in the traditional
analyses of an MLS, this paper presents an analytical DSC
method to model the MLS’s magnetic field/forces, and an
embedded sensing system utilizing the existing magnetic fields
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to measure its rotational and translational displacements of the

MLS. The remainder of this paper offers the following:

— Section II formulates the magnetic fields of an MLS using a
DCS method for computing its radial/thrust forces in closed
form and for sensing its rotational and translational motions.
The DCS models relax some common assumptions; for
example, negligible end effects and ideal “gear ratio”.

— To gain insights into an MLS design for short-length
applications, Section III presents three numerical studies: the
first analyzes the end effects on the MLS using the DCS-
based force model. The second investigates the parametric
effects of the magnetic models on the field-based sensor
design. The third presents a three-step algorithm to determine
the unique solution to the inverse magnetic field model and
measures the translational/rotational displacements.

— Based on the DCS models without assuming an ideal “gear
ratio” and magnetization, Section IV presents the
development of a prototype MLS with embedded sensing and
experimental validation of the field-based sensing method.

II. ANALYTICAL MLS MODELS

Figure 1(a) defines the coordinate frames, components, and
parameters for design and modeling a magnetic leadscrew
(MLS) with an embedded sensing system, where XYZ is a world
(reference) frame and x;:zr and xyz; are the local coordinate
frames of the rotor (radius ) and the translator (radius r;),
respectively; and the (z, z;) axes are aligned with the Z axis. As
the screw rotates (angle @), the translator moves (displacement
z) from its initial position zo along the rotating axis.
Traditionally, the MLS design assumes a position-invariant
“gear” ratio @z(=2n/A) which indicates z traveled by 4 as 6

rotates by 2n during the rotary-to-translation transmission.

Rotor (screw ,
rgdius ,A?_ Y "™ PM-pair

Translator
(cage)
radius 7,

(b) E g=r,—r,—2hp
Figure 1. Schematic of Magnetic leadscrew (MLS). (a) Coordinate systems. (b)
PM geometry. (c) Leadscrew parameters.

Section view

As shown in Fig. 1(b) where the circumferential surfaces of
the rotor and the translator are separated by an airgap g, (N, Ny
permanent magnets (PMs) are surface mounted on the (rotor,
translator) along a helix (pitch A). The PMs with axial
magnetization £M (Fig. 1c) are in pairs separated by a gap of
2g- and, without loss of generality, they are assumed to have a
cylindrical geometry (radius rp and thickness 2/p) in the
following discussion. For a complete helix that has N PM-pairs,
the (position p.;, magnetization n.) vectors of the /™ PM-pair
have the form in the local coordinates in (la, b) where the
subscript ¢ (= r or f) denotes the (rotor or translator):

r.cos(lg) cos(/g)
P..=| rsin(lg) |andn,=|sin(lg) (1a, b)
IA/N%(r,+g.) 0
2z _ i=0,1,~--,(N,—l) Rotor
¢_W andl_{j:O,l,-n,(N,—l) Translator * (Ic)

For analyzing the magnetic system, the cylindrical PM
(magnetization M = Myn.) in the air is modeled as a surface
current density (SCD) K source to account for its boundary
effect, which can be computed from the cross-product of the
circumferential surface-normal ny and M, providing a basis to
solve for the MFD of the PM-pairs in a closed form using the
DCS method [15] which decomposes the PM’s circumferential
surface (as=47h,r,) into Ng SCD k; elements (each with an area
ai=as/Nrwhere k=1, 2, ..., Ny). Its MFD can then be computed
by superposition reducing the computing of the Biot-Savart
surface integral to a summation.

In XYZ coordinates, the DCS-modeled MFD B; of the /™
PM-pair at a point P is given by (2a~g) where the subscribes *
denote the +M and the position vector Py locates the k™
elemental SCD Ky of the /" PM-pair:

B,(P)=>[B,. (P.P,.)+B, (P.P, )] (2a)
where B, (PP, )= f;[ K”‘iﬁﬁ i(Pzt_FPM) (2b)
b <[2] 5" |+ p,, [Cor]<[eos(®)

e =R, ] zik + X w || sin(*) (2¢)
c,

and K, =—[R_]| S, |x(xM) (2d)
0

_[R.(ig+0)][R,(z/2)] c=r
and where [RC]—{ [ z(j¢)][Ry(7f/2)] =t (2e)

- 0 01 cos(e) —sin(e) 0
BRI o e =0y e

In (2c), the position vector P+ can be described by (3a, b)
where the local coordinates p,+ and p,+ are given by (la~c):

Xr[t (0)
P..(0)= Y,I-Zi(é’) =R.(0)p,.. (3a)
Xy 7 0
]‘)t/'t(Z): Yt] =|: O :|+p1jt (3b)
Z”_(Z) z+z,

To facilitate design, the geometrical parameters are
normalized to the PM radius 7, in (4a~e):
Sy A& &
Pply P, Py P, P,
For consistency, the position vectors, MFD, SCD, and force are
normalized accordingly in (5a~d) where (B,, f;) are defined in
(Se, f) and o, is the permeability of free space:
) B K f

where B, =y M, and f, =B M ag

(4a~e)

=1Ly (5a~d)

(Se, f)
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With the normalized parameters and variables defined in
(4a~e) and (5a~d), the force models and magnetic field for
designing an MLS and its embedded sensor are described in
Sections 1I.4 and II.B, respectively.

A. Magnetic Force Model of the MLS

Using the DCS models (2a~g), the volume integral for
calculating the Lorentz force exerted on the translator reduces
to a summation of elemental cross-products (K x B,) over the
Nk elements. For clarity, the indexes (K, k) are used to indicate
the SCD elements of the (rotor, translator). Since the SCD
vector Ky is directly used in the rotor field B,, it is not necessary
to compute the MFD generated by the current loop. In the XYZ
coordinates, the normalized magnetic force acting on the
translator (consisting of N; PM-pairs) can be computed from the
sum of the individual forces given by (6a, b):

_ 1 NN o _ o
F(0.2)=~ XD [K, B, (P ) +K, B (P, )] (6a)
K Jj=0 k=1
where B, (1_’, 9) = [ B, Ery EHT
P NS Ky x(P-Py.) Ky x(P-P, ) (6b)
. ———— —
k i=0 K=l |P_P:'K+ |P_PIK—|
— — T
Ky, ="Ky _|: C Sz¢+9 C Q¢+9 S(/JK:' (6¢)
— T
K/'k+ = _K_jk— :[_Cq;kS' C kC' S(pk:| (6d)
C[¢+0(pr +EK) S;mes 0
Py = Si¢+9 (pr +Zy ) + CI¢+9S¢1< + 0 (6€)
ip,/N+C, +(1+p,)
Cy(p, +_Ek)_S/¢Sk 0
and P, = Sj¢(pt+zk)+Cj¢S¢,k + 0 (61)
P /N+C, Z+(1+p.)

As illustrated in Fig. 2, the denominators in (6b) are the
distances (7a b) between the j‘h translator and i rotor PM-pairs:

L.= -P.[iL.=|L|= (7a, b)

++ K+
In (7a, b), the subscripts [(++ and —), (+— and —+)] indicate the
magnetization vectors of the PM-pairs contributing to
[repulsive, attractive] forces. Since the magnetization vectors of
both the rotor PMs and translator PMs are radially pointing in
the XY plane, the line connecting the two centers of the j®
translator PM-pair is always parallel to that of the i rotor PM-
pair. Hence, the two lines between the (/' translator and i*"
rotor) PMs with My and that with M-, which contribute to
repulsive forces, are parallel and have equal lengths:
L.,=L _ (70)
The numerators in (6a, b) can be written as dot products (8a)
in terms of that have the properties given by (8b~e):

++ _| Jk+ /k— 1K+

K, <K, x(P,, —P,. )=

(K, o(Pr P )[R ~[Roe oK (B -B) O
K, o(P, —P.)=-K, o(P,-P) (8b)
R o(Po-Py)=2R, o(B B )+25,(140)  (80)
K[K+0K,.k+ :K[K—'K/k =—K K/.k :—KI.IG'K/-,(+ (8d)

For compactness and gaining physically intuitive insights

into the magnetic forces (6a) can be Written as (9a~e):

7-3
2L ( j++ b/++L++)
6 Z) - Z};Z ( /+— b/+—L+—) (93)
K| — =

“ k " L—+ (aj—+KiK+ - bj—+L—+)
where a, , = K 'L++, g = I_(jki .Ei¢ (9b, 0
ij = K,' K ket and I_<1Ki .I_(jk¢ (9d, ¢)

Using the propemes (8b~d), (9a) can be expressed as
Z)_ Zz[a K z/ +++yl/:| (103)
1< k Jok i,K
where @, =Loa,  +2(1+p.)L"S,, , (10b)
0

Bi=Lab.,., v, =2L.(1 +p.)S, {(1)} (10c, d)
=20} ~L}and L} =L° - . (10e, )

The model (10a~f) provides the basis to analyze the effects
of the MLS parameters, (7, hp; Mo), (r:, 7 g A) and the
magnetic lead zo (Fig. 1b), on the force f; a good understanding
is essential to maintain a position-invariant gear ratio for rotary-
to-translation transmission while minimizing the radial force.

]th PM-pair (translator) Pji Pjkt

\ L+

-th

Pix P,xr i PM-pair (rotor)

Fig. 2 Schematics illustrating the elemental force model (6a).

B. Translator MFD Models for Embedded Motion Sensing

For (Z, 6) motion sensing of the MLS, the embedded motion
sensing system measures the translator MFD obtained by
subtracting the rotor MFD from measurements. As in (6b), the
MFD field of the translator-PMs at the sensing point P, can be
computed from the cross-products over the N elements, which
can be rewritten in normalized form as

K, x(P-P,)= [skew(l_(‘/ki)](l_’s ~Py) (11a)
[v, 0 —v. v
where skew| v=|v ||=| v, 0 —v [, (11b)
| v, -v, v, 0
X —CyZ + 8,8, — X,
and P PlkJr = Y S[¢Zk C1¢S¢;k Ve (1 1C)
(Z ~Z)+C, —Z,,
For simplicity,
we define 2,.(1)= z 3/2 (12)
|:Ps Plk+ :|
where “+ 7 represents (C, andS,) and (C,Zz, and S ,z,) in

the 1%t and 2" terms in (14), respectively. Each summation in
(12) can then be compactly written as

|I_’ —13,+ _[(z -Z)- ,+] +2C,[(Z,-2)-%.. ]+
X2 =2[%, = (84S, —Cuzi) | X, +
—2[y, (CySp+ 817 ) T+ (o +Z,) +1

(13)
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and ]Z[ ,,ﬁ( P,. )J

_C*? /¢%I+((C¢k)) ‘;:( = )?cl
skew| C, 2. (C, Y-y, +
lt(Sq;S (Z'*Z)ffclr (14)

1 ZH (Sgp/: k) 0 C]¢
_zli(Sq)kEk) 0 S1¢
0 0 2,:(CuZy)

Based on (14), the sensors are located at Py(X=0, Ys=0, Z)
along the rotor centerline to determine the axial displacement.
From (12) to (14), the following observations can be made:

1) The dominator of (12) reduces to
) 3/2
J ] (15a)

N T Z,-7Z)-z,,+C,
|:|Pr _ Ptji 2:| = |:(2 s ) Zl/
S+ (p,+7, )

2) Since sin(-pk)= —sin(gok) and cos(—gk ) = cos(pk) ,

_ -3/2
3,.(5,)= stk [|p' » } =0
3) The translator MFD measured by the magnetic sensors at
Py(X=0, Y~0, Z,) depends only on the displacement Z:

(15b)

B.(2)-X[B,.(2)B, (2)] (150)
where ]_3,/&(2) =
(Z-Z-2,)%,.(Cu)+Z (1)][%} (15d)
+ s =+ jE\ ok Jjt S/'¢

P, (C(ok ) +2. (kaEk )
The above observations suggest that Z can be measured from
the Z-component of B; (16a, b) assuming ; >>#,, for simplicity:

ﬁ—’;iszl=a”_’ztzﬂ<%>—zfM

where Y. + )

R . 2 3/2
{[ ———j 1+C¢k} +S;k+p,2}

III. PARAMETRIC ANALYSES

The magnetic force and MFD field models (6a, b) for design
analyses of the MLS and its embedded sensing system are best
illustrated numerically. For a given rotor radius 7, and PM (rp,

hp), the N PM-pairs (in a helical cycle with pitch A) housed
within the translator radius 7, with a rotor-translator airgap g
(Fig. 1b) are constrained by (17a~c):

N =floor (71, /1,); p, >4(1+p.) (17a,b)

=p.+2p,+p, (17¢)

The nominal design, along with the values used in the studies,
is given in Table I. Three numerical studies are conducted:
Section II1.A4 illustrates the principle and model of an MLS by
simulating the parametric effects on its radial and axial (thrust)
forces; the results reveal the end effects by relaxing the common
assumption (18) and determining the optimal zy. Section III.B
analyzes the parametric effects on the MFD field of the
translator PMs, which provide the theoretical basis to design an
embedded sensing system for the MLS. Section III.C presents a
method to determine the unique solution to the inverse

(16a)

(16b)

and p,

translator-MFD model for measuring Z and &independently.

TABLE 1. Nominal values used in simulations
PM: r, =4.76mm, p,=1/6; M,=1.3T.
MLS: p,=3, p,=3.73, p.=0.17, p; =

Sect. (Fig.) Values used in the parametric studies
A(Fig. 4) N=3,r,=9.53mm, p,=1/6; N=6, r, = 6.35mm, p,=1/4;
N=38,r,=4.76mm, p,~=1/3,2/3,4/3
4 (Fig.5) N#N, N,/N=4,38.
B (Fig. 6) 6c: p,=3.23,3.73,4.23,4.73; pp=

6.N=8,N,/N=1,N,/N=4, zy/r,=1

4,6,9.6d: p,=5,6,7.

A. Parametric Effects on Magnetic Thrust Force

Traditionally, the MLS force is derived assuming (18) that
generally neglects the end effects by allowing ¢ — too:

(18)

To gain insights into the end effects of an MLS design with a
short operating length, the end effects on the MLS are analyzed
using the force model (10a~f).

Consider the j=0™ translator PM-pair initially aligning with
the =0 rotor PM-pair. The translator PM-pairs travel along the
Z axis and sequentially align with an equal number of rotor PM-
pairs as the latter rotates. After translating z=/¢A/ N or Z=z+z,
(Fig. 1b), the j=0 translator-PMs align with the (" rotor-PMs
while rotating & =—/¢ as viewed by the translator, which can

be described in the XYZ frame as

2 A
f(9=f7,z=fﬁjsz(Z=ZO;6’=z=O)

_ pth¢ [ Py
Pij-0) = PSSy = 0 (19a)
z+z,+(1+p.) | {2/ N+Z,£(1+p.)
3 prC(i—l)tﬁ P,
Piig=r) = prS(i—l)yﬁ = 0 (19b)
(AINE(1+p)| [AINE(1+p.)

As seen in (19a, b), the relative displacement between the j=0"
translator-PM and ¢" rotor-PM in the axial direction depends
only on the magnetic lead z, which governs the thrust force (6a,
b). Figures 3 to 5 summarize the results of the numerical study
to determine an optimal magnetic lead zy that maximizes the
axial force while minimizing the radial force.

Figures 3 and 4 analyze the effects of the magnetic lead zp on
fo(Z=zo; z=0 =0). The (top, middle, bottom) plots of Fig. 3
graph the individual (fx, fy, fz) component forces contributed by
each of the translator PMs, where the (left, right) plots
correspond to the PM with (M+, M-). Figure 4 analyzes the
effects of the PM aspect ratio p, and the PM-pairs/helix N on
the axial and radial forces. Based on (10a~f) that relax the
commonly made assumption (18), the (fy, fv) acting on the j®
PM-pair and that on the (j+N/2)™ PM-pair in the presence rotor-
MFD B, field are nearly equal and opposite to each other for
any zo as shown in the 1% and 2" rows of Fig. 3. In contrast, the
j and (j7+N/2)™ PM-pairs contribute nearly identical £ in both
magnitude and direction as shown in the 3™ row of Fig. 3 where
all the eight (fj = 0, ...,7) individual contributions collapse
approximately onto a single curve; the latter indicates that the
magnetic force on the j PM-pair is not significantly influenced
by other translator-PMs except its immediate neighbors. As a
result, the net force fy is primarily axial and peaked near zy/r,=1
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(Fig. 4b) with a small but non-zero radial force (Fig. 4a). Based
on the parametric studies, N=8, r, = 4.76mm and p,=1/6 are
chosen as optimal values in the subsequent studies. As revealed
in Figs. 4(a, b), an increase in r, for a given (7, /) or in A, for
a given (7, r,) will result in a smaller thrust force since an
increase in the PM radius r, for a specified rotor radius 7, can
be achieved but at the expense of reducing N or the number of

PMs in one helix cycle (17a).
4

j:(l)*’- ‘51 )

— - |
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Fig. 3. Forces f; contributed by each translator PM. Left: PM (M.). Right: PM
(ML). Top, middle, bottom rows: X, Y, Z component forces.
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Figure 5 illustrates the end effects on the radial and axial
forces by comparing two different rotor lengths (characterized
by N,/N= 4 and 8 for a given N,= N). In both configurations,
the radial forces are several orders smaller than their axial
forces but nonzero at starting. For N,/N—o, the axial force

approaches a constant value after rotating 2 cycles (or
translating 21). The unbalanced radial and axial forces can be
observed after translating 24 for N/N=4; this is because an
increasing number of the translator PMs will face air instead of
rotor-PMs, where the magnitudes of the unbalanced forces
depend on the PM aspect ratios and the magnetic lead (Fig. 4).
For the selected design parameters, the unbalanced radial forces
can be kept within 0.6N and axial forces within 2% variation of
the nominal value of 32.55N over the range of 3 1.

B. Translator MFD Field (Forward) Model

To provide the theoretical basis to design an embedded
sensing system for the MLS, the MFD field of the translator
PMs is analyzed numerically. With p~=3.73 and =6, the
computed B;; curves of each PM (=0, 1, ..., 7) with M- are
graphed in Fig. 6(a, top), which exhibit an identical shape but a
phase difference of A/N; between the j and the (j+1)" PMs. As
shown in Fig. 6(a, bottom) where the individual contributions
from the (j=0)" PM-pair M: and their sum are graphed, the two
MFD curves are vertically symmetric with a phase difference
of 2(r,+g-)/A geometrically designed for the MLS. The net
MFD field of the N (=8) PM-pairs is compared in Fig. 6(b);
contrasting B;, (Bx, By:) are non-symmetric.

The (o, p1) parametric effects on the net MFD field of the
N=8 PM-pairs are illustrated on the (top, bottom) plots of Figs.
6(c, d). Asshown in Fig. 6(c, top) and Fig. 6(d), the B, curves
are symmetric with two local minimums at £d//A about the peak
B.i/By values at —0.4333(Z-Z;)/A and the distance d//A increases
with p,. The effects of pi on the peak B.;/By values and the
locations of the two local minimums at £d/A can be analyzed
in Fig. 6(c, bottom) and Fig. 6(d).

C. Embedded Sensing System based on Translator MFD

The numerical findings in Section I1I.B provide a basis for
designing an embedded sensing system for an MLS. Both the
forward model (15c, d) and its inverse solutions are needed for
designing an embedded field-based sensing system. While the
former (Section II11.B) offers a means to analyze the MFD field
for a design, the latter that solves for the displacement from the
MFD measurements must be computed in real-time, which are
illustrated in Subsections C./ (Figs. 6, 7) and C.2 (Fig.8).

C.1 Inverse MFD model and its non-uniqueness

Unlike the forward B; model (Fig. 6b) which has a unique
solution for a specified Z, the inverse solution that solves for the
displacement Z from a single MFD (B, By, Biz) measurement
may not be non-unique. As an illustration, consider two sensors
(S1 and S,, each monitoring a range of 1.81) are placed along
the centerline defined by (20a, b):

Za=(0.9+043)A=1331; Z,=(1.8+1.33)2=3.134  (20a, b)

The sensors rotate with the rotor about the Z-axis, which
takes advantage of the symmetry and largest monotonic range
of the B curves (top right, Fig. 6) to cover a 3.6 sensing range:

B,| :m where /=1, 2 (21a)
B, (Z.,6) [c S } B EZ;
d sl _ 0 0 xtl .
o |:Bys1§Z’9):| _SH C9 B_Vﬂ Z (21b)
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Although the (B, Bys)) components of the I sensor depend
on both (Z, 6), the magnitude of radial component |Bx, and the
axial component B.y are preserved under rotation; the latter
provides a means to decouple the measuring of the translation
Z from that of the rotation &. The “(Si, S;) measurements” are
simulated to solve for the displacement Z in Fig. 7(a, b). To help
visualize the non-uniqueness of the inverse solutions that solve
for the normalized displacement (Z—zo)/A from the (Bzs1, Bzs2)/Bo
and/or (|Bsilxy, |Bs2lxy)/Bo measurements, Figs. 7(c, d) present the
inverse solutions to the MLS field model in 3D view and its
projection on the measurement plane. Figure 7 reveals three
pairs of nonunique inverse-solutions (indicated as “squared 17,

triangled 2”7, and circled 3”; in other words, two possible
displacements for each of the three (Bx1, B:s2) pairs labeled as
red-squares, blue-triangles, and green-dots, respectively.

C.2 Measurement algorithm for embedded (Z, 6) sensing
To eliminate the ambiguity from the inverse solutions, the
full motion range is divided into four domains (I';, I, I3, ['4)
based on Bs (= B.s1+B:s2) such that the inverse solution in each
domain is monotonic and can be uniquely determined from the
measured By and By, using the three-step sensing algorithm
(Fig. 8d) to independently measure Z and &
Step 1: determine the domain using logical deduction (Fig. 8b):
If |Bs1|xy2|Bsz|xy if Bp=e — T'y; else B.xpx<e — I's.
else |Bsi|y<|Bsaly : if Bz1<e — T'3; else B =e —> 4.
Step 2: determine Z from the calibrated curve (inverse model)
within the domain found in Step 1 (Fig. 8b).
Step 3: from the coordinate transformation (21b),

B B 1 |B,
O=tan' =L —tan~' =L [ = .
B B {2 |B.,

Xy BSZ
o <|Box

¥ (22)

Xy

sl il
As illustrated in Fig. 8(c), the radial (Byu, Bys) component of the
" sensor depends only on Z and thus serves as a reference to
compute @ from (B, Bys). The sign (and hence uniqueness) of
0 in (22) is determined from the signed (Bys, Bys) and (Byu, Bya).
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Fig. 8. Simulations illustrating the embedded sensing system. (a, b) Domain
classification and inverse solutions based on By (= B.qtB.»). (c) Inverse
@ solution. (d) Flowchart of the sensing algorithm.
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IV. EXPERIMENT RESULTS AND DISCUSSION

Based on the parametric studies in Section III, a prototype
MLS with embedded sensing has been designed (Fig. 9) and
developed (Fig. 10). The rotor (N,= 32 PM-pairs) is supported
on two rotary bearings at both ends of the rotor, and the
translator (N;=N = 8 PM-pairs) slides along a pair of alignment
rods in the bushing bearings. The PM-pairs are mechanically
located so that the same magnetic lead between the rotor and
translator can be maintained at both the start and the end of the
travel to generate the positive (or negative) thrust force in the
forward (or backward) direction (Fig. 9¢) where the translator-
PMs are ahead by z relative to the corresponding rotor-PMs in
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its motion direction. The characteristic parameters of the MLS
and its embedded sensors, and the instrumentation used for the
experimental studies are summarized in Table II. The results are

presented in Section IV.A4 and discussed in Section IV.B.
Rotorshaft  Translator Rotor

Coupling to
driving motor 20 Zo0

Force direction

Sens b
ensor (at starting)

cables

Forward

@ _ I ! —
i i f Zyrre—
Rotary bearings Alignment rod/bushing F directi Backward 2z
(both ends) (both sides) oree direction g - L]
(at end of travel)
20 S, S,
Embedded I
®) [ 1.33%4 13 sensing system ) ot

PMs for calibration (Gayss test probe) ~ XYZ positi

ion
SO S stages
: < A

Gaussmeter
~and probe

-50 0 50
) 20 b Vi(mV)
Fig. 12 MLS sensor calibration. (a) Experiment setup. (b) Results.

Table II. Parameters of the MLS, embedded sensor, and testbed

Fig. 9 CAD model of the prototype MLS.

Rotary bearing supports at both ends
Rotor flanges for sensor alignment

Translator PMS

(thin-film covered)

Rotor PMS

Instrumentation
Gaussmeter

XYZ pStage (HTIMS502R)
Rotary pStage (HTIMS502R)
Linear uMeter

Embedded sensors and DAQ
MED sensors (CYSJ166A)
ADC (NI MyRIO)

Optimized MLS Geometry

Specification

0-2400mT, Relative error: £2%
Range: 25.4mm. Resolution: 1pm
Range: 360°. Resolution: 1°/60.
Range: 25.4mm. Resolution: 2.54um

Range: 3T. Sensitivity 3.1~4.ImV/mT
12-bit Analog input (0 ~ 5V)

and bushing support  (thin-film covered)

orthogonality
fixtures

N Sensor cables to NI MyRIO for ADC
Fig. 10. Prototype MLS. (a) Overall view and rotor PMs. (b) Translator PMs.
(c) Embedded sensors.

A. Experimental Results

The study with results in Figs. 11~14 and Table III has a
three-folded objective: The 1% verifies the DCS model by
comparing its calculated MFD field B of a PM in the global
coordinates with the Biot-Savart’s integral [15] and
manufacturer’s experimental data [17] in Fig. 11 where %
RMSE is the root-mean square error. The 2" and 3™ calibrate
and validate the embedded sensing system, respectively.

The 2" study calibrates the sensing system (Fig. 12a), where
the two sets of three single-axis Hall-effect sensors (Si, S») are
fixed at Z = 1.331 and 3.134 on the centerline, each set
measuring (Bsx, By, Bs:) of the PMs positioned by a XYZ micro-
position stage. To cover the same MFD measuring range of the
prototype MLS, two PMs with the same radius 7,= 4.76mm but
large aspect ratios are used in the calibration. During
calibration, the measured output voltages (offset subtracted) of
each sensor are digitized by an NI MyRIO and processed in NI
LabVIEW, which are then linearly related to the MFD
measured by a handheld Gaussmeter in Fig. 12(a).

z 3

Moe, i
. r,=476mm, p=1/6 P45
Y M~=13T
et B. B, B. -

ps(xs»ysazs) g DCS omip = — RMSE(O/A))

0 ntegral— — —— === (1.9,1.9,1.7)

1 A (3.53.58.7)
X P(X=Y=0, 2 4 6 8 10 12 14

(a) Z,~2.5:2.5:12.5)mm  (b) Z(mm)

Fig. 11. Comparison of DCS model with analytical solutions and

manufacturer’s data (a) Coordinate systems. (b) Results.

=3, p=3.73,p.=0.17, p1= 6. N=8,N,/N=1, N,/N = 4, z/r, =1

Table I1I: Experimental results

Sensor calibration (at supply voltage: 5.83V) B, =m,V, +c¢, (Fig.12)

Sensors X (my, cn)
Si | (-1.856,0.594)
S» | (-1.021,-0.255)

Z(mu, cn)
(=0.906, 1.049)
(~0.889, 2.578)

Y(mH, CH)
(-1.154, -1.684)
(-1.119,0.732)

Domain curve fits: (Fig. 12¢) [By., mean, STD
Z(B) = c4B*+ ¢;B° + B+ ¢ 1B+ ¢y (Fig. 12¢)

Curve 1 (C1): [0.040 0.054 0.009 —0.006 0.001] 7=0.522

Curve 2 (C2): [1.082 —0.035 0.000 0.000 0.000] (8.418 ,0.530)
Curve 3 (C3): [1.918 0.037 0.003 0.000 0.000] 7Z=231

Curve 4 (C4): [2.917 -0.054 0.044 —0.015 0.001]

Estimation error (Ave, SD, Max):
|AB.| (mT): S1(0.56,0.18, 1.88); and S2 (0.40, 0.29, 1.99)

AZ/1:(0.05, 0.06, 0.14) AG/ |:(0.05,0.04,0.12)
7 Yo

(6.786, 1.121)

The 3 study validates the embedded sensing system for
measuring Z on the setup shown in Fig. 13(a) where the
measurements are digitized by MyRIO, analyzed via LabVIEW
(Fig. 12a) and summarized in Figs. 13(b~e). The measured
(Bzs1, Bzp) are plotted in Fig. 13(b) over the 34 range in the step
of 45° for 6=0° to 315°, demonstrating the measured (B:s1, B:s2)
do not depend on €. Their sums, Bs (= B.1+B:), for domain
classification are plotted in Fig. 13(c) where the DCS model and
domain curve-fits (Table III) are compared with experimental
data (6=0 as an example). Figure 13(d) plots the (Bxs, Bys)
components which depend on both the displacement and
rotation for two angles (6=0°,45°). Once Z is acquired, the
corresponding (B, By) are computed to determine & (Fig. 13e).

B. Discussion of Results

The comparisons among the DCS model, integral
solutions, and experimental data in Fig. 11, in general, show
very good agreements. The %RMSE of the (B, By, Bz) relative
to the experimental data and integral solutions are (3.55%,
3.55%, 8.74%) and (1.91%, 1.91%, 1.71%), respectively. The
experimental (Bx, By, Bz) data exhibit a slightly larger RMSE



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

than the integral solutions and the DCS model, suggesting that
the actual PM properties are slightly different from the
manufacturer’s specification assumed in the analytical models.

Rotary stage  Alignment shaft XYZ MFD sensors

Micrometer
e = X

(a Linear guide and bushing support
3
10 s, S 0-0"" ca
DCS — — 55l © Experiment "By |
| > Curve-fits (C1~4)
=3 -
- 7/ 2 DCS C3
E
q
0 c2
S c1
i 5 10
(b) By (mT)
~ Si S;h
£10 By By) P 0
= (Buo, Bro) > ¢
&
-10
£10
g
= 0
°§-IO -10
@ 0 I 2 3@ 10

Fig. 13 Experiment Results. (a) Setup. (b) B, B.s. (¢) By = Bo+Bz0. (d) By
and B, where /=1 and 2. (e) Illustrative @ inverse solutions.
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Fig. 14 Error quantification. (a) z-direction MFD error (b) Z-6 error.

Figure 14(a) graphs the boxplots showing the (Ave, SD,
Max) errors, where data were taken at 8 different angles at each
Z/ A location, from which the absolute sensing errors [|AB/mT,
AZ/ A, AG/(2m)] are statistically summarized in Table III. Fig.
14(b) shows the displacement/rotation errors over the 34 range.
The displacement Z (Ave, SD, Max) errors are (5%, 6%, 14%)A
with its largest value at about 1.54, which are due primarily to
the MFD sensing errors (Table I1T) and a small sensitivity of the
MFD sensor at 1.54. Because the € sensing depends on the Z
sensing, it is less accurate than the latter. Some discrepancies
can also be observed in Fig. 13(e) where the radial (B, Byu)
component of the /M sensor depends only on Z and should
appear on the circle for a specified Z; the radial variations from
its mean are caused by sensor misalignments. The sensing
errors can be reduced by improving the mechanical hardware
alignments to ensure orthogonality and by employing MFD
sensors that have a higher sensitivity and low sensing noise.

V. CONCLUSION

The modeling, design, and parametric studies of an MLS
with embedded sensing have been presented. The MFD and
force models of an MLS have been formulated in a closed form
neither assuming an ideal gear ratio nor neglecting the end
effects. The DCS model reveals that B,. and |Bx, along the
translator centerline are invariant to ¢, which leads to the
development of a prototype MLS with an embedded field-based
sensing system and a 3-step algorithm to determine the
uniqueness of the inverse solution for independently measuring
Z and 6. The DCS models and sensor design have been
experimentally validated. The comparisons between the DCS
model and experimental data show excellent agreement. The
(Ave, SD, Max) RMS errors of the absolute displacement and
rotation estimation errors are (5%, 6%, 14%) of the pitch A, and
(5%, 4%, 12%) of 2x, respectively.
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