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Abstract—Planetary exploration rovers are required to es-
timate their position in GPS-denied environments accurately.
Visual Odometry is one of the solutions in such environments. By
tracking feature points in the image, it is possible to estimate the
position with high accuracy, even in extreme environments. If all
the feature points in the image are used for estimation, however,
the computational cost increases. Especially in stereo camera
methods, the calculation time required for stereo matching is
highly extended. Therefore, this paper proposes a method for
selecting feature points in the image before stereo matching. The
accuracy will be diminished if the number of feature points is
reduced. To address this issue, the feature points are selected
separately for rotation and translation. As a result of verification
using an actual rover, it is confirmed that the proposed method
can reduce the computational cost by up to 33% compared to
the conventional method.

Index Terms—Visual Odometry, Stereo Camera, Feature Point
Selection, Planetary Exploration Rover

I. INTRODUCTION

In the last few decades, planetary exploration by rovers has
been actively conducted. The rover brings detailed data by in-
situ measurement on the planet’s surface. Not only that but a
wide range of data can also be obtained by moving, so it is
possible to collect different data from various area. 6 rovers
have landed on Mars so far, and 3 rovers are currently active.
They gave much information about Mars, such as the existence
of water in the past and the possibility of life [1]. In the near
future, the role of rovers will be more critical in planetary
exploration.

To safely traverse with communication latency between
Earth and the Moon or the planet, the rover is required to
have autonomous navigation capability. The navigation system
for exploration rovers consists of perception, localization,
path planning, and traverse [2]–[5]. Among them, localization
significantly contributes because others require accurate rover
position information. GPS is not available in the planetary
environment. Wheel odometry is also ineffective because
the error increases significantly on sandy soils and slopes.
Therefore, visual odometry (VO) has been used for exploration
rovers for the last few decades [6]–[8].

VO [9] is the image-based ego-motion estimation technique.
For the planetary exploration rover, feature-based stereo VO
is used. The feature points are extracted from the image taken
at different locations, and the camera motion is estimated by
matching the feature points between the images. The scale
indeterminacy is solved by using the stereo camera. The
procedure of stereo VO is as follows. First, feature points are
extracted from 2 images taken at different locations. Next,
the feature points are matched between the images. Then,
stereo matching is performed to estimate the depth of the
feature points and calculate the 3-dimensional position of the

feature points. Finally, the camera motion is estimated by
optimizing the reprojection error between two 3-dimensional
feature points.

One of the issues in VO is the computational cost. Image
processing is computationally demanding for the planetary ex-
ploration rover, in which computational resources are limited;
in particular, stereo matching takes a lot of time. NASA/JPL’s
latest Mars rover, Perseverance, takes 4.9 seconds per frame
[10]. This is the processing time when using an FPGA
specialized for image processing, and it will take even longer
if the power resource is severe. Reducing the number of
feature points is one of the solutions to improve computational
efficiency. However, the accuracy will be reduced if the feature
points are reduced blindly. Therefore, it is necessary to select
the appropriate feature points.

Bucketing Technique [11] is a typical method for feature
selection. The image is divided into grids, and the feature
points are extracted from each grid. This method reduces
the number of feature points and distributes them uniformly
over the entire image, making achieving both efficiency and
accuracy possible. It is a simple yet highly useful method and
is used not only in VO but also in various other methods, such
as Visual SLAM [12] [13].

Zhao et al. [14], [15] proposed the feature points selection
scheme based on the uncertainty model of least squares
pose optimization. The combination of feature points that
maximizes the determinant of the error matrix is searched. A
stochastic-greedy search algorithm was also proposed to solve
NP-hard combinatorial searches efficiently. A feature selection
scheme in high-speed motion was proposed by Buczko [16].
However, these methods required detailed uncertainty informa-
tion of the feature points, meaning stereo matching is required
before selection.

Otsu et al.’s two-point algorithm [17] selects one nearby
point and one far point from the robot perspective view
and uses each point for translation and rotation estimation
separately. This method reduces the minimum number of
feature points required for the optimization from at least three
to two. Similar methods were also proposed in [18], [19] which
use infinite homography. In [20], the orthogonality-index is
defined, representing the orthogonality of the coordinates of
feature points, then preferentially selects those with a good
index during optimization.

As mentioned above, the prior works have shortened the
processing time of the optimization phase in VO. However,
the computational cost of stereo matching, which requires the
most processing time in stereo VO, is equivalent to the case
where all feature points are used. There is room to achieve
further reduction in computation time.
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To this end, the authors propose a feature selection scheme
that selects feature points before stereo matching. The main
contributions of this article are as follows.

• Using the information on the camera ’s orientation at-
tached to the rover, the rough positions of feature points
are selected based on their positional relationships.

• Using singular value decomposition (SVD) in the opti-
mization phase, separating the feature points for rotation
and translation estimation is possible. Taking advantage
of this, the proposed method separates rotation and trans-
lation and selects the appropriate one for each..

• The proposed method was evaluated using an actual rover.
It was confirmed that the processing time per frame can
be reduced by up to 33% compared to the conventional
method. The validity in the natural environment is also
demonstrated.

II. PRELIMINARIES

A. Notations and Definitions

Let F(·) denote a 3-dimensional coordinate frame. Fc

and Fr are camera-centered frame and rover-centered frame,
respectively. p(·) ∈ R3×1 denotes 3 dimensional coordinates in
F(·), P (·) ∈ R3×N is the point group consisting of N points
in F(·), and P̄ is the centroid of the point group P . ∆P
denotes the point group P subtracted by the centroid P̄ . The
rotation matrix and translation vector in Fd to Fs is expressed
as sRd ∈ SO(3), tsd ∈ R3, respectively. The image’s pixel
coordinate is represented by u = [u, v]T ∈ R2 where u and v
are the horizontal and vertical coordinates, respectively.

B. Stereo Camera Model and Setups

This study assumes that the stereo camera mounted on the
rover has two cameras attached at the same height, separated
by b, and facing in the same direction. The camera is required
to be calibrated in advance to obtain the intrinsic, extrinsic,
and distortion parameters. The pinhole camera model [21]
can be considered against well-calibrated cameras. Given
corresponding points uL, uR in the left and right images, the
3-dimensional coordinate pc is calculated by triangulation.

pc =
[
x y z

]T
=

b

d

[
u− u0 v − v0 f

]T
(1)

where f is the baseline and focal length of the stereo camera,
and d = uL−uR is the disparity. It is assumed that the stereo
camera is mounted on the rover at a height h and a depression
angle θdep.

III. RELATIVE POSE ESTIMATION
OF STEREO VISUAL ODOMETRY

Let Fs and Fd be camera frames at different points, and
consider the problem of finding the relative orientation from
the images taken at those points. First, the feature points
are extracted from these images, and find the corresponding
points between them. Then, stereo matching is performed to
estimate the depth of the feature points and calculate the set
of two point groups P s,P d. The relative pose of the camera
between two frames, Fs and Fd, is equivalent to the pose
of the 3-dimensional coordinates P s and P d. This results in

Fig. 1. VO algorithm with the proposed feature selection scheme.

an optimization problem that finds sRd, t
s
d that minimizes the

reprojection error.

{sRd, t
s
d} = arg min

{sRd,tsd}

∑
i

||pi
s −R(pi

d − t)||2 (2)

The relative pose between Fs and Fd is recovered by solving
the above optimization problem. The optimization problem is
solved by methods such as [17]–[19], [22].

SVD is also the solution for the above optimization problem
[23]. First, the sRd is obtained by the following equation.

sRd = VUT

USVT = svd(∆P s∆PT
d )

(3)

Next, the translation vector tsd is obtained by the following
equation.

tsd = P̄ s −s RdP̄ d (4)

As mentioned above, by using SVD, the rotational matrix
and translational vector are separately estimated. So the feature
points used for optimization can be separated into those
for rotational estimation and translational estimation. This
research aims to reduce the number of feature points used for
optimization by selecting feature points suitable for rotation
and translation estimation.

IV. PROPOSED METHOD

The VO algorithm using the proposed feature point selection
method is shown in Fig. 1. First, as with general VO, feature
point detection and tracking are performed. Next, the feature
points are selected. Then, stereo matching is carried out on the
selected feature points Finally, the relative pose is calculated
using Eq. (3), (4). As described above, by incorporating the
proposed method into VO, the number of times of stereo
matching can be reduced, and the processing time can be
decreased. The details of feature point selection are described
below.

A. Coordinate Transformation

Before selecting feature points, the detected and tracked
feature points are converted to the rover-centered frame Fr. To
calculate accurate 3-dimensional coordinates, it is necessary
to perform stereo matching, which goes against the purpose
of this research. Therefore, as shown in Fig. 2, a homography
transformation is applied to the photographed image to convert
it into a view from directly above. This conversion is based on
the assumption that the mounting height and depression angle
of the camera are easily predicted, and the approximate po-
sitional relationship with the ground is known. The following
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Fig. 2. Homography transformation to convert the coordinate.

Fig. 3. Feature point candidates. The green points are all the feature points.

equation calculates the coordinate of each pixel [xr, yr, zr] in
Fr.

zr
[
xr yr 1

]T
= hrRc

[ u−u0

f
v−v0
f 1

]T
(5)

rRc is derived from camera depression angle θdep.
The terrain is not flat and undulated on the planet’s surface,

so the coordinates are not strictly accurate. However, since the
above transformation is used only for feature point selection,
the effect of conversion error on position estimation is con-
sidered small. In the following, the coordinate system Fr is
supposed to select feature points.

B. Feature Point Selection Scheme

This section selects NR feature points for rotation estima-
tion and Nt feature points for translation estimation. Figure 3
shows the outline of the feature point selection. In the proposed
method, rotation and translation estimations are performed
separately, so the feature points are also separately selected.

1) Selection for Rotation Estimation: As described in Eq.
(3), SVD-based optimization considers the rotation around the
centroid of the feature points. The spatial coordinates of each
feature point include errors due to feature point matching and
stereo matching, so when estimating rotation, the farther the
center of gravity is, the more accurate estimation is possible.
The proposed method preferentially selects from the outer
edge of the feature point set. Given the set of all feature points
P all

r , the vertices of the convex hull of P all
r are selected

as feature points for rotation estimation. Qucikhull [24] is
used to find the convex hull. Then, the remaining feature
points are randomly selected from the entire region to maintain
robustness against outliers. In random sampling, the distance
between the selected feature points is checked, and if the
distance is less than ϵdist, the feature point is not selected.

2) Selection for Translation Estimation: The translation
vector is calculated so that the centroids of two feature points
overlap. To accurately estimate translation, it is desirable
to select feature points with high stereo matching accuracy.
Stereo matching can calculate depth with higher precision for
points located in the rover’s vicinity, so Nt points are selected

Fig. 4. Selected feature points. The red points are the feature points for
rotation estimation, and the blue points are the feature points for translation
estimation. The green points are the feature points that are not selected.

in order from the bottom of the image, which is the area closest
to the rover.

An example of the finally selected feature points is shown
in Fig. 4.

After selection, stereo matching is performed on the selected
feature points to calculate the 3-dimensional coordinates P rot

s ,
P tran

s , P rot
d , and P tran

d .

C. Optimization using selected feature points

Using the feature points P rot
s , P tran

s , P rot
d , and P tran

d , the
relative pose is calculated using the following equations.

sRd = VUT

USVT = svd(∆P rot
s ∆P rot

d
T
)

tsd = P̄
tran
s −s RdP̄

tran
d

(6)

If there are feature points whose depth estimation by stereo
matching or tracking between images is incorrect, the esti-
mation accuracy may deteriorate significantly. Therefore, in
order to increase the robustness against outliers, the proposed
method adopts RANSAC (RANdom SAmple Consensus) [25]
when solving the above equation.

V. EXPERIMENT

This section evaluates the proposed method using two types
of data: a testbed rover in the laboratory environment and a
dataset on the natural terrain.

A. Evaluation with Testbed Rover

This experiment aims to verify the effectiveness of the
proposed method in terms of processing time and accuracy.
The effect of the number of feature points on the accuracy is
also demonstrated.

1) Setup: The experiment used a field that reproduced the
surface of the Moon and Mars. The testbed rover developed by
JAXA/ISAS which mounted ZED2i stereo camera was used in
this experiment. The rover’s position was also measured using
the motion capture camera system OptiTrack. The rover drove
one lap around the field at 0.05m/s, and images were taken at
3-second intervals. The overall trajectory length was 12.2m.
Figure 5 shows images taken during the driving.

2) Evaluation method: The following three methods were
used for comparison.

• SVD-ALL: Optimize using all feature points by Eq. (3)
and (4)

• LM-ALL: Optimize Eq. (2) using the Levenberg-
Marquardt method by all feature points

1221



Fig. 5. Snapshots of the captured images

• SVD-BKT (Ns): Optimize using the Eq. (3), (4), and Ns

feature points are selected by the Bucketing Technique
[11].

All the methods used the Harris corner detector [26] for feature
point detection and ORB [27] for feature descriptors. The
input of the visual odometry is stereo images taken by ZED2i.
ZED2i outputs depth images as well as stereo images, but
this experiment does not use depth images to measure the
processing time of stereo matching.

The accuracy and the processing time per frame evaluate
the effectiveness of each method. Regarding accuracy, 3 types
of metrics were evaluated: Absolute Trajectory Error (ATE),
Relative Pose Error (RPE), and Relative Orientation Error
(ROE) [28]. ATE is the error between the estimated trajectory
and the ground truth trajectory. RPE and ROE are the errors
between the estimated and ground truth trajectories at each
frame. The CPU used for verification was Intel Core i9-
11900K@3.5GHz.

The accuracy of SVD-BKT and the proposed method was
evaluated while changing the number of feature points from
30 to 500. In the proposed method, this value is the sum of
the number of feature points NR for rotation estimation and
the number Nt of feature points for translation estimation. In
addition, NR and Nt were set to be the same.

The evaluation was performed 10 times for each method.
3) Results and Discussion: The experimental results are

summarized in Table I. Regarding the processing time, the
proposed method improved the processing speed by 3.0 times
compared to SVD-ALL. Further analysis of the processing
time is shown in Fig. 6. As shown in the figure, the selected-
based method (SVD-BKT and proposed method) significantly
reduced the time required for stereo matching. The average
number of tracked feature points in SVD-ALL and LM-ALL
is 1768±865 per frame. SVD-ALL and LM-ALL are required
to execute stereo matching for all these feature points, while
the proposed method and SVD-BKT are only required to
execute stereo matching, in this case, for 50 points. The above
demonstrated the effectiveness of narrowing down the feature
points before stereo matching.

Although positive results were obtained in terms of pro-
cessing time, performance in terms of ATE deteriorated. Since
there is no significant difference in RPE and ROE between the
proposed method and the method that uses all feature points,
it is inferred that the error becomes large in some specific
frames.

Figure 7 shows the relationship between the number of

Fig. 6. Average processing time for each process of VO.

feature points and the accuracy. The more feature points used,
the higher the estimation accuracy becomes, and the accuracy
approaches that of a method that uses all feature points.
Although the proposed method was superior in all cases in
RPE, SVD-BKT showed better results in ROE. The proposed
method reduced the rotation error by selecting points that
move away from the center of gravity. It means the feature
points for rotation estimation were preferentially selected from
the outer edge. However, since the accuracy of stereo matching
is low for points located far away, a dilemma arises in that
the rotation accuracy deteriorates when such points are used.
Further accuracy improvement can be expected by considering
a selection method that considers the trade-off between the
error caused by stereo matching and the error caused by
the distance from the center of gravity. On the other hand,
since the proposed method yields good results for RPE, it
is concluded that it can obtain appropriate feature points for
translation estimation.

B. Evaluation on Natural Terrain

This experiment evaluates the proposed method in a natural
terrain environment.

1) Setup: The MADMAX dataset [29] provides stereo
image sequences on natural terrain. The dataset is taken in
various environments, including flat, undulated, rocky, and
sandy terrain. The image data is corresponded to the ground
truth trajectory measured by RTK-GPS. In this experiment,
sequences A-0 and H-0 were used. Sequence A-0 has flat
terrain that is easy for the rover to drive on and is a feature-rich
environment with many rocks and pebbles. Sequence H-0 is a
challenging environment for the proposed method. The surface
of the terrain is covered with sand, so it is difficult to extract
valid feature points. In addition, the terrain is undulated, so the
assumption that the posture relationship between the camera
and the ground is known is violated. The distances of the parts
used for evaluation are 41.5m and 58.5m for A-0 and H-0,
respectively.

The MADMAX dataset uses hand-held modules, so the
exact camera height and angle are unknown. But [29] reported
that the approximate height and angle are h = 1.20m and
θdep = 28deg, respectively. Therefore, the same parameters
were used for the proposed method.

2) Evaluation: The proposed method was compared with
SVD-ALL and SVD-BKT. SVD-BKT selects 200 feature
points, and the proposed method selects NR = 100 feature
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TABLE I
AVERAGE VALUES OF PROCESSING TIME, ATE, RPE, AND ROE ON AKI ROVER

Processing Time [s/frame] ATE [m] RPE [m] ROE [deg]
SVD-ALL 0.173 ± 0.0882 0.0274 ± 0.00306 (0.22 %) 0.00632 ± 0.000147 0.466 ± 0.00409
LM-ALL 0.168 ± 0.0827 0.0298 ± 0.00435 (0.24 %) 0.00571 ± 0.000167 0.460 ± 0.00290
SVD-BKT (50) 0.0562 ± 0.0236 0.0843 ± 0.0442 (0.69 %) 0.0105 ± 0.00202 0.582 ± 0.0177
Proposed (50) 0.0576 ± 0.0220 0.0822 ± 0.0326 (0.67 %) 0.00694 ± 0.000486 0.489 ± 0.00452

(a) ATE (b) RPE (c) ROE

Fig. 7. The number of feature points vs. accuracy.

TABLE II
AVERAGE VALUES OF PROCESSING TIME, ATE ON MADMAX DATASET

Sequence A-0 Sequence H-0
Processing Time [s/frame] ATE [m] Processing Time [s/frame] ATE [m]

SVD-ALL 0.357 ± 0.0444 0.744 (1.79 %) 0.295 ± 0.0757 1.77 (3.02%)
SVD-BKT 0.100 ± 0.00791 1.41 (4.41 %) 0.0873 ± 0.00912 2.18 (3.73%)
Proposed 0.112 ± 0.00777 1.00 (2.41 %) 0.100 ± 0.0107 1.88 (3.22%)

points for rotation estimation and Nt = 100 feature points
for translation estimation. For all methods, feature detection
and detector were performed by ORB. The evaluation was
performed 1 time for each method. The processing time and
ATE were evaluated.

3) Results and Discussion: Table II shows each sequence’s
processing time and ATE results. Similar to the experiment in
the previous section, for both sequence A-0 and H-0, feature
point selection-based methods such as SVD-BKT and the
proposed method succeeded in shortening the calculation time.
Regarding ATE, SVD-ALL scored the best results, followed
by the proposed method, and SVD-BKT is the worst. Figure
8 shows the estimated trajectory for each method and each
sequence. For Sequence A-0, all methods can estimate a
generally correct trajectory. The error gradually spreads due to
drift, and it is most noticeable in SVD-BKT. This result shows
that the proposed method is effective even on natural terrain
and that the error drift increases if feature points suitable for
position estimation are not selected. In sequence H-0, SVD-
ALL and the proposed method estimated the correct trajectory,
but SVD-BKT failed to estimate it halfway. Sequence H-0 has
severe ups and downs, and there is a risk that the results of co-
ordinate transformation using Fig. 2 may deviate significantly
from the actual coordinates. However, the results showed no
direct negative effect on position estimation, confirming the
effectiveness of the proposed method on natural terrain.

VI. CONCLUSION

This paper proposed a method to select feature points in
VO based on their positional relationships to improve the
processing speed of VO. By taking advantage of the fact that

rotational and translational estimation can be separated by
using SVD during optimization, the feature points for rotation
and ones for translation were separately selected. For rotation,
feature points are selected which are located at the outer edge
of the feature point set, and for translation, are selected which
feature points are located in the area close to the rover. The
experiment result showed that the proposed method was highly
effective in processing speed. It was also verified that the
proposed method could improve the accuracy compared to
Bucketing Technique. In addition, the experiment using the
MADMAX dataset demonstrated the proposed method was
valid in the natural environment. However, the accuracy of
the proposed method was slightly lower than the VO using all
feature points. To select important feature points for position
estimation is under planning as a future work.
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