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Abstract— Predictive maintenance is an industrial practice
to detect component failure ahead in time and before ma-
jor damage is done to the system. Bearings are susceptible
to such damage phenomena and should be replaced before
critical failure, therefore early detection proves important. For
wide applicability, these detection methods should work on
easily available sensor data and have limited computational
complexity. This study presents a method for classifying the
health of a bearing based on the machines vibrational sensor
data and with additional focus on computational complexity.
The process involves converting the signals to the frequency
spectrum using continuous wavelet transforms, and identifying
specific frequency ranges associated with damage phenomena
in bearings. Two approaches were used: analyzing the wavelet
responses and creating a scalogram image to locate relevant
areas. The results obtained on a bearing monitoring data
set, created within the Flanders AI Research program, were
consistent for both approaches and identified a specific set
of scales that resulted in reduced computational load whilst
attaining high failure detection rates. Consolidation is achieved
by repeating the procedure on two public data sets.

I. INTRODUCTION

Bearings are one of the most ubiquitous components in
industrial machines, especially in rotating parts such as
electromechanical systems driven by motors. They allow
for smooth relative motion (i.e. without much friction) and
ensure that load forces and vibrations are diverted from the
operating machine to the supporting structure [1]. These
bearings however suffer from degradation phenomena such
as fatigue, wear, fractures and more, ultimately hindering
its proper functioning and therefore exposing the rest of
the machine to excessive forces. Given that bearings are
inexpensive compared to the total cost of a machine, timely
detection and replacement of a degrading or damaged bearing
is desirable.

Prognostic health management has been applied to bear-
ings in a multitude of approaches. The most effective tech-
niques ensure that operation should not be halted to evaluate
the health state. Therefore methods primarily rely on sound,
vibration, current and temperature sensor data. Conventional
methods monitor these signals and analyze them using time-
domain synchronous average analysis, envelope analysis,
kurtosis and many more [2]. Another line of research focuses
on the frequency domain representation, obtained by using
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the Fast Fourier Transform and revealing signal character-
istics that were hidden or hard to notice in time-domain.
This approach is particularly useful for signals with lots
of noise and cyclic behaviour, such as rotating machinery.
The frequency response is then combined with detection
algorithms such as envelope detection analysis, frequency
energy analysis and machine learning methodologies [3],
[4]. A combination of both domains can be found by
using time-frequency transformations such as the Short Time
Frequency Transform [5], Continuous Wavelet Transform [6]
and Hilbert-Huang Tranform [7], where frequency informa-
tion is captured in function of time.

Another emergent research direction in health monitoring
is the application of data-driven models. In [8], a nonlinear
degradation model is proposed and updated using Expec-
tation Maximization in order to predict remaining useful
lifetime of a bearing setup directly from vibrational data.
Other approaches combine the (time-)frequency domain with
data-driven methodologies. For example, graph theory is
combined with wavelet packet decomposition in [9] whilst
in [10] adaptive wavelets are introduced and combined with
autoencoders for fault diagnosis. Deep neural networks are
also applied in a variety of forms to health monitoring,
particularly Convolutional Network based Fault Diagnosis
(CNFD), which has achieved state of the art performance in
many benchmarks [11]. These type of networks are mostly
known for image processing and hence often make use of a
spectogram or scalogram image created from the frequency
response. Another approach is using computer vision and
feature extraction methods, such as Scale Invariant Feature
Transform, Histogram of Oriented Gradients and Speeded-
Up Robust Features [12], [13], which are local methods
(i.e. unlike in CNNs, the location within the image is of
importance). These features can be put together with a
variety of machine learning methodologies such as regression
methods and tree based models to obtain a classification
methodology.

Given this abundance of possibilities, it remains a chal-
lenge to find the optimal combination of features and al-
gorithms. Not only should these algorithms be compared
in terms of accuracy, but also in terms of computational
complexity, greatly influencing the applicability in practice.
CNNs for example are known to achieve unseen accuracies,
however at the same time often consist out of hundreds
or thousands of parameters. This results in high training
and evaluation times, therefore hindering the implementation
in real-time monitoring systems with limited computational
power such as programmable logic controllers. Opting for
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alternatives, such as the previously mentioned local feature
extraction methods, can allow the usage of simpler models
hence leading to lower computational burden. Additionally,
not only the size of the model, but also the size of the
feature set affects the computational complexity. This for a
twofold of reasons. Firstly, training and validation of machine
learning models, in almost all cases, scales proportionally
to the feature dimension. Secondly, features are not always
easily obtained and might involve preprocessing steps (e.g.
the creation of a scalogram). Obviously in both cases, a
reduced feature set size greatly ameliorates the algorithm’s
computational load and hence applicability. Feature selection
is a crucial step in a machine learning pipeline and is also
known to increase model performance and interpretability. A
nice overview on possible selection methodologies is found
in [14], ranging from statistical tests [15], [16] to genetic
algorithms, to exploiting models with an inherent metric of
feature importance.

This paper proposes an iterative procedure for bearing
health classification with additional attention for computa-
tional complexity, leveraging on feature selection. A dual
approach is investigated where a continuous wavelet trans-
form is both used directly and preprocessed into a scalogram
image where Histogram of Oriented Gradients (HOG) is used
to extract important regions. These features are combined
with a Random Forest Classifier for health classification.
Physical intuition about damage phenomena is leveraged
as it is expected to capture such phenomena in a limited
set of wavelet responses. Both approaches are used con-
currently and confirm the existence of a limited subset of
important frequencies by using feature selection methods.
The proposed wavelet subselection technique, utilizing HOG,
represents a novel methodology for enhancing computational
efficiency and constitutes a significant contribution of this
paper. The proposed procedure is applied to a new data set,
created by Flanders Make [17] in the context of the Flanders
Al Research (FLAIR [18]) program, and shows that inner
bearing defects can be detected accurately with as little as
two wavelet components. The results are verified on two
publicly available data sets and corroborate the validity of
the methodology.

II. CONDITION MONITORING ON BEARINGS: DATA SETS

Within this paper, the proposed method is validated on a
multitude of data sets. First off, a data set has been created
within the scope of the Flanders AI Research program
(FLAIR) [18]. The data set, produced by Flanders Make
[17], encompasses vibrational sensor data from a mixture
of healthy and damaged bearings. Section II-A provides a
more in depth overview of the data set. Section II-B handles
two of the most renowned public data sets, on which the
methodology will be verified. All of these data sets have in
common that operational conditions are at quasi-static rpm
and for the damaged bearings an indent has been inflicted
prior to the start of the experiment. Therefore a discrete
classification problem is presented, i.e. a bearing is either
healthy or faulty, rather than a continuous health metric.

Fig. 1. Fleet of 4 bearing health monitoring setups at the Flanders Make
lab [17]. A second identical test rig is present with 3 more setups.

Fig. 2. Top view (Left) and front view (Right) on sensor locations within
the experimental test setups.

A. FLAIR Data Set

With the aim of creating data suitable for bearing fault
diagnostic and prognostic methods, seven identical setups
have been created as seen in Fig. 1. On each of the separate
setups, 10 bearings of type 6205-CTVH have been put
into operation at a fixed rotational speed of 2000rpm with
additional radial load of 9kN. Out of those 10 bearings, 7
were artificially damaged by introducing an indent at the
inner race of 400+25um, leading to a total of 49 damaged
bearing experiments and 21 healthy examples. Vibrational
data is acquired at SOkHz by use of an accelerometer, as
depicted in Fig. 2. Additional sensors are placed to monitor
radial force and temperature inside the housing. Experiments
were continued until one of the test stopping criteria, shown
in Table I, was obtained.

TABLE I
TEST STOPPING CRITERIA

Bearing health Stopping criteria

Healthy Temperature stable for 15min
and test duration of at least 2h
Unhealthy 30 min after measured acceleration

exceeds 5g
Acceleration exceeds 20g
Temperature exceeds 70°C
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B. Public Data Sets

For validation and benchmarking purposes, publicly avail-
able data sets have been examined. An overview of most
known data sets on bearing health monitoring is found in
Jiao et al. [11]. Considering the setting of the previously
mentioned data set, i.e. fixed rotational speed, initial indent
on the inner race and vibrational measurements, two data
sets have been selected.

1) Case Western Reserve University: Case Western Re-
serve University (CWRU) provides a comparable test situa-
tion with bearing health monitoring at an operational speed
between 1720 and 1797rpm [19]. Defects were introduced
in the bearings through the use of electrical discharge ma-
chining. The diameters of the defects are of varying size
(177.8, 355.6, 533.4, 711.2um) and are introduced in distinct
locations (inner raceway, rolling element and outer raceway).
To ensure comparability to the FLAIR data set, we restricted
ourselves to the inner raceway defects. The resulting data set
contains 4 experiments of nominal bearing operation and 24
measurements of bearings corrupted with inner race faults.

2) Society for Machinery Failure Prevention Technol-
ogy: Society for Machinery Failure Prevention Technol-
ogy (MFPT) contributed another data set similar to those
mentioned before [20]. Data is collected from the test rig
operated at 1500rpm and subject to varying loads. Different
fault have been induced and we focus on the inner bearing
faults. This leads to three measurements of nominal (i.e
healthy) operation, each with a duration of 6 seconds and
7 measurements of bearings with inner race defects, each
lasting 3 seconds.

For each of the above defined data sets, the goal is to
classify the damaged bearings from the healthy ones. The
next Section will handle in depth the used method, whilst the
Section thereafter will handle the results. In this study, we
will primarily analyze the results obtained from the FLAIR
data set. This focus is warranted due to the FLAIR program
serving as the context for the present research and due to the
larger size of the FLAIR data set in comparison to the other
data sets.

III. METHODOLOGY

The proposed methodology is presented in this section in a
three-step process. Section III-A details the utilization of the
Continuous Wavelet Transform (CWT) for the conversion
of raw vibrational data into the time-frequency domain.
Subsequently, Section III-B describes the conversion of these
frequency responses into two feature sets that can be utilized
in conjunction with various classification algorithms. Lastly,
Section III-C addresses the feature reduction of both feature
sets to attain a framework with reduced computational com-
plexity. Fig. 5 shows an overview of the three steps combined
in a single framework.

A. Continuous Wavelet Transform

The most accessible data obtained from bearings are
the raw sound and vibration signals. Therefore, to ensure

applicability, most health monitoring techniques start from
either of these signals. Both signals are high-frequent and
hard to interpret and are consequently preprocessed into more
tangible features. Spectral analysis does exactly this as it
summarizes a time-varying signal in terms of frequency-
dependent quantities. The most prevalent method for doing
so is the Fourier Transform, however, other methods exist as
well such as the Hilbert-Huang Tranform [7], Continuous
Wavelet Transform [6], Synchrosqueezing Transform [21]
and many more. We opted for the use of the Continuous
Wavelet Transform (CWT) because of its varying dilation,
which allows to efficiently capture mixtures of high- and
low frequency vibrations [22], as present in a damaged
operational bearing. Additionally, CWT is known to be more
sparse than the Fourier Transform [23] and will hence result
in most of the information about the signal being stored in
only a few coefficients.

The wavelet transform is a mathematical tool used to
decompose a time-domain signal, denoted as z(t), into a
set of wavelets, ¢ (t). This transform is achieved through a
convolution of the signal with the wavelets at various scales,
where the varying scales allow for the wavelets to effectively
stretch or compress in length. The result is an input-output
mapping, where, at a certain time instance and for a defined
wavelet scale a, the wavelet response, C, is calculated by
using (2). The structure of the wavelet ¢(¢) has yet to be
defined and can take on many forms [24]. For CWT, the
most commonly used form of the wavelet is a complex sine
wave with Gaussian envelope, i.e. the Morlet wavelet [24].

wMorlet(t) = e_a‘thjQﬂfet 1

And the transform is defined as:

Clab) = ﬁ / OO

With * denoting the complex conjugate and

t—>b
a

)dt 2

o f. the center frequency, taken fixed as %Hz

o « the width of the Gaussian, taken fixed as 1/2
o a the scale of the wavelet

e b the time shift of the wavelet

B. Feature Engineering

In Machine Learning an important step in obtaining a well-
performing model is finding a good set of features for the
desired task.

1) Energy Response: A first step has been taken by
reducing the raw vibration signals from the setups from
Section II to their wavelet responses. Additionally, complete
measurements are split up into separate samples with a
length of 2s. By doing so, the algorithm is enforced to be
able to distinguish healthy and damaged bearings with a
limited amount of information and this a substantial amount
of time prior to critical failure. Furthermore it is important
to note that a damage phenomenon will result in increased
activity at a certain frequency. Therefore we limit ourselves
to the energy response, being the squared magnitude of

1129



the coefficients |C|?. Denoting C, as the response for a
wavelet with scale a, the response can be further reduced
by averaging over the time-axis. A smgle T Nponse value is
obtained for each wavelet, being x, = N 0 , with V
the amount of samples in 2 seconds of simulation (dependent
on the used setup). Therefore, by focusing on a fixed set
of wavelet scales, a one-dimensional feature vector X is
obtained. This set of scales is initially chosen from 2 to 155,
corresponding to a frequency range from 20.3kHz to 264Hz,
comprising most bearing fault frequencies [25].

X = [z;]i = 2 : 155] 3)

By combining the attained feature vector with known
classification algorithms, in this case taken to be a Random
Forest classifier [26], a first pipeline from signal to classifi-
cation is obtained.

2) Histogram of Oriented Gradients (HOG): The same in-
formation can also be displayed by using a two-dimensional
set of features. This is done by converting the time-dependent
wavelet transform from (2) into a scalogram, i.e. a time-
frequency plot where coefficients are shown using a heatmap.
An example of such a scalogram is shown in Fig. 3.

This approach has received growing interest as a result of
data-driven image recognition techniques, most prominently
CNNs. Although great results in terms of accuracy have
been obtained by using a CNN in combination with the
scalograms, training and evaluation of the network proved
to be time-consuming and therefore alternative processing
of the image has been looked at with the goal of achieving
real-time health monitoring. Alternative methods often do not
look at pixel values directly but try to detect shapes or edges.
One such alternative is HOG, mostly known from computer
vision and object detection. The main disadvantages when
compared to CNNs is that HOG is not translational- and
rotational invariant. However, due to the nature of the current
use case this forms no limitation. The algorithm is further
explained using Fig. 4.

The original m X m scalogram image is rescaled to a n
x n image and divided into cells of ¢ x c pixels. For each
pixel in this cell, the pixel gradients (relative to surrounding
pixels) are calculated resulting in a gradient magnitude g and
direction 6.

ﬂ
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Fig. 3. Example of a scalogram on a single 2 second sample from the
FLAIR data set.
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Fig. 4. Histogram of Oriented Gradients applied to a scalogram (adapted
from [27]). Left part shows the original image. Middle part and right part
show the gradients in a certain cell both visually as in numbers.

These gradient-orientation couples (g, #) are grouped in a
single histogram (dividing the possible gradient directions in
d bins) by proportionally adding each gradient magnitude to
the two directional bins most close to the gradient direction
(hl and h])

0—0;
hi =95, @
hj—gg,

J 0;

Good practice adds the usage of unsigned gradients and
histogram normalization (i.e. normalizing the histograms
over blocks of b x b cells). For a hands-on example and
implementation we refer to [27].

Concatenating the normalized histograms results in a
single vector X o with length (2 — (b — 1))?b*d whilst
directly using the pixels of an m x m RGB image would
result in 3m? feature values. Hence, by appropriate choice
of the variables in the HOG methodology, the feature vector
is greatly reduced in dimension and consequently more
suitable to be combined with most traditional classification
algorithms. Again we opted for Random Forest, analogous
to the previous method. The parameters are taken as follows:

e n =60
e Cc=5
e d=28

e b=2
e« m = 100

Resulting in a reduction in dimension from 10000 features
to 3872 and a more informative feature set than directly using
the pixel values.

C. Feature Reduction

Although using a full set of informative features leads
to optimal capability of a classification model to capture
underlying relations, it is not often desired due to a number
of reasons. Firstly, using all of the features leads to increased
computational load. Not only does the model need to learn
more parameters and relationships during both training and
evaluation, it also needs to create additional features. In this
case the latter will result in more wavelets being looked at
and convolved against the time signal, being quite an expen-
sive operation. Secondly, reducing the amount of features
often leads to a more simple model, therefore being less
prone to overfitting.
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In order to make the subselection of features, two methods
have been employed. A first method uses statistical tests
such as x? [15] and ANOVA F-values [16] to evaluate the
dependence between a feature and the classification label.
One could select the k features with highest correlation
to the output, and evaluate the performance with such a
subselection. A popular alternative is using a classification
model with an inherent metric of feature importance. A
common example is using the coefficients in linear- and lo-
gistic regression, however many alternatives exist. A similar
concept of feature importance exists with Random Forests,
where features are ranked according to their Mean Decrease
Impurity importance (MDI) [28].

Given the current understanding of bearing classification,
it is acknowledged that a bearing fault often occurs at specific
frequencies. These frequencies are mostly a function of the
operated bearing (amount of bearing balls, bearing diameter
etc.) and the rotational speed. In an industrial setting one
can often assume that these are constant or limited to a
small set of operating conditions. Under this assumption,
it becomes valuable to focus on those frequencies where
the bearing fault occurs, rather than the complete frequency
spectrum. For both of the approaches stated in Section III-B
such a reduction is possible. When investigating the features
selected by the selection techniques, it is possible to trace
back those features to a corresponding wavelet scale and
pseudo-frequency (i.e. frequency of a wavelet [29]). For the
first method this is straightforward as each feature in X
directly relates to the selected wavelet coefficient. A similar
deduction can be made on the HOG feature set, however
with some additional effort. The feature in the concatenated
array Xpyog can be traced back to the row of the ¢ X
c cell in the scalogram by using formulas (5)-(7), with
{Xnoa,C, B, R}; being respectively the i*h feature, cell,
block and row.

(6)

R=[(£1))

Looking back at Figure 3, one can translate the cell row to

a range on the y-axis, [Ymin, Ymaz], and thus the important
frequency range is found using the following:

fi=27", ®)

These frequency ranges overlap with the frequencies cor-
responding to the used wavelets. As a consequence, the
selected HOG features can be related to a corresponding
frequency and as such, a subset of wavelets can be used
to create reduced future sets X,.q and Xpgogreq. An
overview of the complete process from vibrational signals
to classification is seen in Fig. 5.

} (G- (B - > ()

i € [min, max]

IV. RESULTS

The proposed methodology has been implemented and
validated on all of the data sets presented in Section II. IV-B
shows the results on the FLAIR data set in an extensive
manner, in the Sections thereafter repeatability on public
data sets is demonstrated. The evaluation is performed in
a systematic manner as elaborated in the upcoming Section.

A. Evaluation Procedure

When investigating bearing health classification, accuracy
is an often used initial measure of performance. However due
to the high class imbalance in the data sets, accuracy does not
suffice and other metrics such as sensitivity and specificity
are taken into account. These values can be summarized in
an Area Under Curve (AUC) value [30]. Cross-validation
is performed to demonstrate repeatability of the results [31].
Since 2 second samples obtained from a single measurement

C.— Xpog,i +1 5 run are highly correlated, they are aggregated in the same
L d ’ 5 fold in order to avoid leakage in between folds [32].
Scalqgr(]m Xuoc
ol IR
£ Bt > - Random Forest
LT
CWT - l."-." “.
— C X > . o
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7y :
a€(23,..,153] :

Feature Selection

Fig. 5. Overview of the proposed methodology. Raw vibrational signals are transformed using CWT and further converted in two feature sets (X, Xgoag)-
Bearing health classification is performed using Random Forest classifiers and optional feature reduction, zooming in on specific frequencies, is added.
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TABLE I
FLAIR DATA SET RESULTS USING FULL SET OF FEATURES

Features | Fold | Accuracy [%] AUC [%]
1 93.67 £ 1.64 | 96.72 + 0.61
X 2 90.75 £ 1.16 | 84.64 + 2.82
3 97.14 £ 0.09 | 99.39 + 0.17
1 96.67 + 0.03 | 98.58 £+ 0.05
Xpgoa 2 94.35 £ 0.04 | 97.16 + 0.20
3 97.40 + 0.05 | 99.47 + 0.03

The model used in both cases is a state-of-practice imple-
mentation of a Random Forest. Without much tuning effort,
promising results are obtained, thus showing the viability of
the proposed framework. A random forest consisting of 30
trees, each having a maximum depth of 10 splits, is trained
with additional class reweighting using the Intel(R) extension
for Scikit-learn for improved computational performance
[33].

B. FLAIR Data Set

First results can be obtained without any feature subset
selection. Evaluation is performed five times and the mean
and standard deviation are depicted in Table II. From these
results it is apparent that both methods obtain accurate
bearing health predictions. Additionally, the results indicate
that the more intensive feature engineering process of HOG
leads to superior results.

In the subsequent experiment the same models are eval-
uated, however using only a limited set of features. These
features have been determined through selection procedures
previously described. The number of selected features, de-
noted as k, is varied in the experiment, and the performance
of the models is calculated on all folds and averaged out.
The outcome of this experiment, depicted in Figures 6 and 7,
shows the results on feature sets X and X o respectively.
Similar to the previous experiment, the results shown in these
figures are based on the average of 5 repetitions.

The results indicate that, even with a drastic reduction
in the number of features, similar and even slightly higher
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Fig. 6. Resulting model using a variable (k) amount of features out of the
feature set X, selected by a variety of methods.
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Fig. 7. Resulting model using a variable (k) amount of features out of the
feature set X o, selected by a variety of methods.
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Fig. 8. Feature importance calculated back to 5 most important wavelet

scales and shown for different feature sets and feature selection methods.

AUC values are obtained. When investigating those features
selected by the selection techniques, it is possible to trace
them back to a corresponding wavelet scale and frequency
(See Section III-C). Using (5)-(8), the inverse transformation
from selected HOG feature to wavelet scale is performed
and Fig. 8 shows an overview of the five most important
wavelets for each of the methods. Importance ranking is
depicted on the y-axis, where importance ranking 1 indicates
the most important wavelet scale. Relative height within the
band is of no importance, but is added for visual clarity.
The findings reveal that the top-performing feature selection
methods consistently select the five lowest scales for both
feature sets.

C. Computational Reduction

As mentioned in Section III-C, there is another major
advantage to feature reduction. Apart from the increased
performance and reduced model complexity, it is clear from
Figures 6 and 7 that using as little as two wavelets results in
increased model performance. As a result, for a reiteration
of the model or for new incoming data, one could go to
a smaller set of features. Applied to the FLAIR data set,
this reduction, going from 153 wavelets to merely 2 (a
= 2,3), reduced the total feature creation time from 94h
to 18min. In case of the second feature set, which needs
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scalogram creation, a similar gain is obtained, going from
375h to 8.6h. Calculations were performed on an 11th Gen
Intel(R) Core(TM) i7-11700K @ 3.60GHz with 8 cores, dual
threading and 32GB of RAM. For the first reduced feature
set, X,cq = [z2, x3], a subset of the complete X is obtained
and hence performance has already been validated (see Fig.
6 with k£ = 2). However, by using a limited set of wavelets,
the scalogram image changes, instead of being a subregion of
the previously created image, resulting in new HOG features
rather than a subset of the ones presented earlier. Therefore
it deems necessary to evaluate the model performance on the
new feature set X go@,req. Table III shows that the proposed
feature reduction indeed leads to a comparable model.

D. Public Data Sets

The same methodology and steps are applied on the public
data sets proposed in Section II. All results pre- and post
feature selection are presented in Table III, where again only
two scales were allowed as subselection. The results prove to
be repeatable on a variety of data sets and consistently show
almost no decrease, and even an increase for feature set X,
in accuracy when moving to a reduced set of features. The
more extensive feature selection method, X yoc generally
leads to better performance, however, since both methods
ultimately converge to the same subset of wavelet scales,
they ought to be used concurrently and affirmative to each
other.

When both methods agree on the feature subset, a firm
belief on the frequency at which the damage phenomenon
takes place is obtained. This leads to a drastic reduction in
feature space and computational complexity whilst providing
the operator with improved insight on the damage phenom-
ena.

V. CONCLUSION

In this work a systematic procedure was presented for
classifying the health of a bearing based on the machines vi-
brational sensor data, whilst minimizing computational com-
plexity of the framework. The conversion to the frequency
spectrum of the signal is performed by continuous wavelet
transforms and is successfully applied to bearing health
classification. It is known that damage phenomena take place
at certain frequency spectra. The proposed methodology
exploits this knowledge by zooming in on those frequencies
in a twofold of ways. The first one is directly from the
wavelet responses whilst a second approach involves creation
of a scalogram image and localizing important regions in the
image. For the proposed use case, both methods agreed and
provided a narrow set of relevant scales. Hereby a reduced
feature set is created, leading to reduced computational
complexity and model complexity.

Future work will look at the relation between the impor-
tant frequencies and operational conditions (e.g. rotational
speed). However, additional data is required as most publicly
available data sets do not allow for such analysis.

TABLE III
FEATURE SELECTION RESULTS AND VALIDATION ON PUBLIC DATA SETS

Set | Features | Fold | Accuracy [%] AUC [%]
1 93.67 £ 1.64 | 96.72 + 0.61
X 2 90.75 + 1.16 84.64 £+ 2.82
3 97.14 £ 0.09 | 99.39 + 0.17
1 96.67 + 0.03 98.58 + 0.05
o Xnyoa 2 94.35 £ 0.04 | 97.16 + 0.20
= 3 97.40 + 0.05 99.47 + 0.03
d 1 94.37 + 0.06 96.78 + 0.21
Xed 2 94.10 + 0.07 | 97.39 + 0.11
3 97.30 £ 0.05 98.31 £ 0.07
1 94.45+ 0.02 96.27 + 0.02
XHOG red 2 95.82 + 0.03 97.81 £+ 0.02
3 96.82 + 0.00 | 98.24 + 0.03
1 100.00 4+ 0.00 | 100.00 + 0.00
X 2 100.00 £+ 0.00 | 100.00 + 0.00
3 100.00 £ 0.00 | 100.00 £ 0.00
1 100.00 4+ 0.00 | 100.00 £ 0.00
Xyoa 2 100.00 £+ 0.00 | 100.00 £ 0.00
E 3 100.00 + 0.00 | 100.00 + 0.00
% 1 100.00 £+ 0.00 | 100.00 + 0.00
Xred 2 100.00 & 0.00 | 100.00 + 0.00
3 100.00 £+ 0.00 | 100.00 £ 0.00
1 100.00+ 0.00 | 100.00 + 0.00
XHOG,red 2 100.00 + 0.00 | 100.00 + 0.00
3 100.00 4+ 0.00 | 100.00 + 0.00
1 100.00 £ 0.00 | 100.00 £ 0.00
X 2 100.00 £+ 0.00 | 100.00 + 0.00
3 78.33 £+ 6.66 | 100.00 &+ 0.00
1 98.67 + 2.67 | 100.00 £+ 0.00
Xuoa 2 100.00 £ 0.00 | 100.00 £ 0.00
& 3 100.00 £+ 0.00 | 100.00 £ 0.00
E 1 100.00 + 0.00 | 100.00 + 0.00
Xed 2 100.00 4+ 0.00 | 100.00 + 0.00
3 100.00 + 3.33 | 98.33 + 0.00
1 93.334+ 4.22 96.30 + 3.31
XHOG red 2 88.33 + 4.08 95.56 + 3.87
3 98.33 + 3.33 | 100.00 + 0.00
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