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Abstract— We introduce a framework for cooperative manip-
ulation, applied on an underactuated manipulation problem.
Two stationary robotic manipulators are required to cooperate
in order to reposition an object within their shared work
space. Control of multi-agent systems for manipulation tasks
cannot rely on individual control strategies with little to no
communication between the agents that serve the common
objective through swarming. Instead a coordination strategy
is required that queries subtasks to the individual agents. We
formulate the problem in a Task And Motion Planning (TAMP)
setting, while considering a decomposition strategy that allows
us to treat the task and motion planning problems separately.
We solve the supervisory planning problem offline using deep
Reinforcement Learning techniques resulting into a supervisory
policy capable of coordinating the two manipulators into a
successful execution of the pick-and-place task. Additionally,
a benefit of solving the task planning problem offline is the
possibility of real-time (re)planning, demonstrating robustness
in the event of subtask execution failure or on-the-fly task
changes. The framework achieved zero-shot deployment on the
real setup with a success rate that is higher than 90%.

I. INTRODUCTION
Cooperative robots are an increasingly important aspect of

modern robotics, with applications ranging from unmanned
vehicles to robotic manipulators [1]–[3]. Cooperative robots
are able to work together to serve a common goal, leveraging
their combined capabilities to perform tasks that would be
impossible for a single robot to accomplish. For example,
individual agents are limited in performing an assembly task
on their own; these limitations can be overcome by using a
cooperative set-up of robotic manipulators [4]. Cooperation
results in the ability to perform tasks with a higher complex-
ity, by increasing the manipulation space of a single robot
by using multiple robots. In this study, we examine how two
robotic manipulators can collaborate to complete complex
tasks by sharing a portion of their individual workspace.
The manipulators are tasked with moving an object to a
desired location and orientation within the global workspace.
By working together, the manipulators can achieve these
goals through multiple, collaborative actions in the shared
workspace, illustrated in Fig. 1.

Task and Motion Planning encompass the solving of
combined problems involving a finite sequence of discrete
mode types, e.g. which objects to pick and place, continuous
mode parameters, the poses and grasps associated with the
movable objects, and the continuous motion paths [5]. Stan-
dard TAMP approaches perform a combined optimization

1Department of Electromechanical, Systems and Metal Engineering,
Ghent University, Tech Lane Ghent Science Park 131, B-9052 Zwijnaarde,
Belgium

2Core Lab MIRO, Flanders Make Strategic Research Centre for the
Manufacturing Industry

of all these parameters, handling the interdependence of
the motion-level and the task-level aspects of the problem.
Cooperation between different robots performing a single
task, can be described as a TAMP problem. Which robot to
query to perform a certain action is then an example of an
extra discrete mode type. In addition we can look at the above
mentioned cooperation problem as such a problem. In this
approach however, the problem is decomposed in separate
scheduling and motion planning problems. The discrete
decisions are completely disconnected from the continuous
motion. The next best task, a new pick-and-place action with
its associated grasp poses for one of the robots, is determined
without performing a trajectory optimization for each action,
resulting in a simplified optimization problem.

To cope with changes in the environment, such as changes
in the desired goal configuration or difficulties with indi-
vidual subtasks, we aim to develop a parametrized policy,
to determine the next best action, that only depends on the
current object configuration and the target goal configuration.
The policy will determine the optimal sequence of actions,
including which manipulator should perform each manipula-
tion, to reach the desired goal. Real-time computation ben-
efits from this control decomposition in supervisory control
and low-level control, as the associated optimization problem
is significantly reduced.

The found policy could be used to accelerate interleaved
TAMP approaches as well, as is shown in other research, that
apply learning techniques to accelerate TAMP. Driess et al.
learn a classifier to determine the feasibility of the resulting
geometric problem for a discrete decision based on an image
of the workspace [6]. In the research by Chitnis et al. [7]
learning methods are used to guide a combined search to find
high-level symbolic plans and their low-level refinements,
e.g. the associated motion plans and grasp poses. At the low-
level they learn how to refine the high-level plans, by learning
to propose continuous values for symbolic references that
are likely to result in collision-free trajectories. In a similar
vein, our method could be used to output the next best action
that has a feasible trajectory, thus guiding the search for an
optimal action sequence.

Our approach uses a reinforcement learning approach to
train this parametrized policy. Reinforcement learning is a
machine learning technique that allows agents to learn from
their experiences and improve their decision-making over
time. Deep reinforcement learning has led to a number of
successes in learning policies for sequential decision-making
problems in both simulated environments [8], [9] as robotic
tasks [10], [11]. Translation of policies trained in simulation
to the real world poses a major problem of current RL
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Fig. 1: Schematic figure showing multiple collaborative actions to pick-and-place object to its desired orientation, which is
unachievable by an individual manipulator because it has only five DoFs.

research in robotics. The latter forms less of a problem in
our approach, since the learning is performed on a higher
level.

Using a discretized version of the shared workspace, from
which the next best action is chosen works [12], but results
in a low success rate and is difficult to train. This could be
circumvented by using a continuous approximation of the
shared workspace, resulting in a more complete parametriza-
tion of the shared workspace. The parametrization is no
longer limited to a set of discrete points in the shared
workspace, but comprises it completely. The motivating
question is if the continuous parametrization results in better
results, such as an increased training speed and a better
success rate.

II. PROBLEM STATEMENT

We start by describing the small-scale setup and its associ-
ated manipulation problem. The setup consist out of a work
cell equipped with two low-cost plane mirrored manipulators
and a perception system. The perception system consist of a
camera attached at the top of the work cell with a clear
top-down view of the workspace and is able to identify
and locate objects. Both manipulators have five degrees of
freedom (DoFs) and are equipped with a low-level controller,
capable of pick-and-placing an object in the base xy-plane.
This plane will be referred to as the manipulation plane.

Two DoFs are used to control the pitch and roll of the
end-effector, during pick-up and drop-off these need to be
zero to ensure a correct grasp and release. Two DoFs are
used to control the position in the manipulation plane, while
the last DoF is used to control the height. Therefore, we can
not directly control the yaw of the robot’s end-effector and
consequently the yaw of the object to manipulate, henceforth
simply referred to as the object’s orientation. This results in
an underactuated manipulation problem.

The final orientation will be the result of consecutive
pick-and-place maneuvers performed by each robot, more
specifically the pick-up and drop-off positions and the ge-
ometry of the manipulators. The individual manipulation
planes of the left and right (respectively L and R) robots are
referred to as ML ⊂ R2 and MR ⊂ R2, which are defined
as the controllable set of end-effector configurations in the
manipulation plane expressed as Cartesian coordinates with
respect to a global frame of reference. In other words, the

individual manipulation spaces are determined as the inter-
section of the individual manipulator workspaces, expressed
in the global frame of reference, and the manipulation plane.
These feasible workspaces consist out of the collection of
points that are collision-free, including self-collision and
collision with the ground. Additionally we can find the global
M and the mutual Mm manipulation spaces, respectively,
as the union and intersection of the individual workspaces.

M = ML ∪MR

Mm = ML ∩MR

A pick-and-place task is considered where objects, placed
in the global manipulation space, need to be repositioned
to a new and given goal position (xg, yg) ∈ M and
desired orientation θg . By adding this orientation to the
manipulation space, the state space S = M×R is obtained.
A successful manipulation is achieved if the object has the
desired position and orientation. When for example the goal
position xg ∈ ML and the present position xt ∈ MR, it
is clear that the task can only be achieved by a hand over
in the mutual work space. Furthermore considering that the
control of the individual manipulators is such that they can
not control the orientation of the object, a sequence of hand-
overs will be required to maneuver the desired object into
its desired configuration sg = (xg, yg, θg) ∈ S = M × R.
In particular a sequence of varying hand-over positions
must be determined in a way that the subsequent relative
reorientations accumulate into the desired final orientation.

The objective of this work is therefore to find a control
strategy capable of querying a sequence of isolated pick-
and-place maneuvers, each of which can be executed by
a single manipulator, and, so that such a sequence exists
from any arbitrary starting configuration to any desired goal
configuration that intersects with the global manipulation
space.

III. METHODOLOGY

The control problem described in section II qualifies as a
TAMP problem since both the optimal hand-over sequence
can be determined as well as the individual motions in
between each hand-over. In this work we propose a hier-
archical control strategy decomposing the TAMP problem
into separate scheduling and motion planning problems.
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A. Mathematical problem definition
The state of the system, indicated by st, consist out of

the Cartesian coordinates of the manipulated object and its
orientation. Similarly, the goal configuration of the object is
denoted as sg .

st = (xt, yt, θt) ∈ S
sg = (xg, yg, θg) ∈ S

The objective is to design a policy function π : S2 7→ A,
so that for any initial state in the state space s0 ∈ S, a
finite sequence of pick-and-place actions at ∈ A can be
determined such that the object can be manipulated into any
desired goal configuration in the observation space sg ∈
S. We will detail the definition of the action in the next
paragraph. For the moment it is assumed that the action
contains sufficient information for the system to change the
state of the object from st to st+1. This problem can be then
formulated as a first-exit optimal control problem.

π∗ = argmax
π

E
s0∼U(S)

[∑t′

t=0
r(st, sg, π(st, sg))

]
(1)

Here U(S) denotes the uniform distribution on S. The reward
r : S2 × A 7→ R can be used to express different abstract
features of the policy such as maximum accuracy or minimal
execution time or can directly relate to the underlying motion
optimization problem. We discuss this possibility in the final
paragraph. Finally, since a first exit-optimal control problem
is considered with a time independent reward function, the
optimal policy function will be time-invariant.

Let us now characterize the information that is encoded
in to the action, at. The action consists out of three separate
decisions:

1) whether the present action is final, indicated by the
Boolean ft ∈ 0, 1;

2) whether the left or right manipulator needs to be
queried, given by the discrete variable bt ∈ {L,R};

3) the next drop-off position, represented by
(xt+1, yt+1) ∈ M in Cartesian coordinates.

Formally, the following action space is retrieved:

at = (ft, bt, xt+1, yt+1) ∈ A = {0, 1} × {L,R} ×M (2)

Presented with this information the selected manipula-
tor should be able to determine and execute the motion
(xt, yt) → (xt+1, yt+1). Some further rationalizations can
be imposed on the policy. In practice the drop-off position is
limited to the mutual manipulation space (xt, yt) ∈ Mm

when ft = 0, as this is the only space both agents can
reach. Only in the final step, ft = 1, the action can coincide
with the global manipulation space, as the drop-off position
should coincide with the goal position. Which agent to query
is not straightforward, since the goal state’s location can be
anywhere in the global manipulation space. Though it may
seem rational to alternate between the two manipulators in
between every query, taking into account the possibility that
the manipulator does not successfully execute the motion
(xt, yt) → (xt+1, yt+1). We opt to leave this decision to the
policy rather than imposing alternation. Additionally the goal
configuration could also change mid-execution.

Perception module

Supervisory Controller

Low level Controller


st ∈ S
sg ∈ S
rt ∈ R

π : S2 7→ A
at = (ft, bt, xt+1, yt+1) ∈ A

(xt, yt) 7→ (xt+1, yt+1)

Fig. 2: Overview of the method, showing clear decomposi-
tion between supervisory controller and low level controller.

The state update rule is determined by a nonlinear func-
tion, that depends on the forward kinematics of the queried
robotic manipulator, and does not depend on the motion plan
between two positions, since the relative orientation between
the object and the robot is assumed to be constant.

st+1 = f(st, sg,at)

= (xt+1(sg,at), yt+1(sg,at), θ(st, sg,at))

In conclusion we may note that the low level motion plan,
i.e. continuous manipulator path between the two positions
and (xt, yt) → (xt+1, yt+1), is determined and performed
by the individual manipulators themselves. It is also possible
that the motion plan is optimal and maximizes some reward.
In the most general case this means that the scheduling
reward can be represented as an underlying path planning
problem.

r(st, sg,at) = min
q(τ)

∫ 1

0

c(q(τ), sg)dτ

s.t. pt = Fbt(q(0))

pt+1 = Fbt(q(1))

(3)

A full TAMP approach would thus require to solve prob-
lem (1) and (3) simultaneously. In this work we decouple
both problems completely, neglecting the possible influence
of the motion planning problem on the task scheduling.
However for this influence to have any significant effect
on the solution, the motion planning objective should be
represented in the scheduling problem. In this work we focus
on sparse rewards, hence validating the assumption.

B. Solution strategy

In this section we discuss how we solve problem (1). Our
solution approach requires us to parametrize the action and
thus in particular the mutual manipulation space, M. Second
we discuss a parametrization strategy for the optimal policy,
π∗. Finally we discuss a strategy to find the optimal policy
by learning optimal parameters.

1) Parametrization of the solution space: As mentioned
previously, we can limit the drop-off position to the mutual
manipulation space. The feasible positions in the manipula-
tion plane for each manipulator lie in between two concentric
circles, with a minimum radius and maximum radius, r
and r respectively. Since the set-up is plane symmetric
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Fig. 3: Visual representation of the continuous representation.

(or mirrored), these are the same for each robot. This is
visualized in Fig. 3.

We can parametrize the mutual workspace with two vari-
ables, α ∈ [−1, 1] and β ∈ [−1, 1], representing the x-
and y-position respectively. We can normalize the x-position
between its maximum, x, and minimum, x, which is the
intersection of the two large circles. Since x = −x we can
scale α with this maximum value to retrieve x.

x = α · x

with
x =

√
r2 − d2/4

Moving up from x to x, the width of the mutual workspace
changes. Therefore the maximum and minimum y-value, re-
spectively y and y, vary with x. The width either correspond
to the smaller, inside the bounds [x′,−x′], or larger circle,
outside the bounds. The value where the width changes can
be found as the intersection between the blue and red circle,
as shown in Fig. 3.

x′ =

√
4d2R2 − (d2 − r2 +R2)2

4d2

Given a certain x, y can be retrieved from β as:

y = β · y

with

y =


√
r2 − |x|2, x ∈ [−x′, x′]√
r2 − |x|2, x ∈ [−x,−x′] ∪ [x′, x]

and assuming again, due to the symmetry, that y = −y.
2) Policy definition: We opt to find a parametrized policy

π(·, ·) ≈ π(·, ·;ϕ), which assigns a subtask at each discrete
time step to one of the manipulators. These perform their
own low-level motion plan based on this given subtask. This
means that instead of solving problem (1) for a specific
initial state each time, we aim to solve for a global policy
representation. This has the advantage that once the policy
has been learning, the policy can be queried explicitly saving
essential computational resources in a real-time setting.

Since the policy is now an explicit function representation,
mapping the state, st, to the corresponding optimal action,

at, it is possible to expand the input space with additional
features that may encode useful information to build the
highly nonlinear mapping. Therefore, as we want to imple-
ment the dependency on the changing goal, we include the
goal information in the state, resulting in an augmented state
and a contextual policy. The previous robot that performed
the action is included as well, this to nudge the policy in the
direction of switching between robots.

ŝt = (xt, yt, θt, xg, yg, θg, bt−1) ∈ S2 × {L,R} (4)

Two different policy architectures are considered. One where
the policy defines the final step and one where this final
step is determined externally, using the kinematics of both
manipulators.

a) Architecture A: One of the main complexities in
the problem arises from performing the final step. The final
action is defined by the Boolean ft and affects the problem in
a highly nonlinear fashion. When eliminating this Boolean
from the action, after each step it needs to be checked if
the object in the mutual manipulation space corresponds
with the desired goal configuration. As the complete goal
information is provided in the augmented state, this check
can be performed for both manipulators. This check is
performed by placing the block at the goal position in
simulation and check if the desired orientation is achieved. If
this orientation is achieved for one of the two manipulators
the object performs the final step.

Because the final step is no longer dictated by the policy
the action space reduces to

ât = (bt, αt, βt) ∈ A′ = {L,R} × [0, 1]2

where αt and βt represent xt+1 and yt+1 respectively.
The policy now has to find a sequence of actions resulting

in a state in the mutual manipulation space that correspond to
the goal configuration. The policy, however, has no idea what
robot performs the final step as this is dictated externally.

b) Architecture B: If the policy dictates the final step,
it has to determine which manipulator needs to perform it
and when it needs to performed. It has to dictate which state
in the mutual manipulation space corresponds to which goal
state for each possible manipulator, while also deciding the
sequence of actions to get to that state. The final step is
now a part of the action sequence. The state is unaltered
from equation 4, while action 2 is adapted to include the
continuous parametrization.

ât = (ft, bt, αt, βt) ∈ A′ = {0, 1} × {L,R} × [0, 1]2

3) Reinforcement learning: We learn this policy using
reinforcement learning. The solution space is parametrized
using continuous variables, therefore it is opted to go with
an actor-critic method, that concurrently learns a Q-function
and a policy.

a) Learning algorithm: We opted to go for Soft Actor
Critic, as this is a popular choice and provided a stable
implementation. Although other methods could have worked
as well, such as TD3 [13] or PPO [14]. SAC optimizes a
stochastic policy in an off-policy way, with as main feature
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the use of entropy regularization. It is trained to maximize a
trade-off between expected return and entropy. Entropy is a
measure of the randomness in the system. If x is a random
value, with a probability mass P . The entropy H of x can
be distributed from the its distribution P according to

H(P ) = E
x∼P

(− logP (x))

The agent will get a bonus reward each time step proportional
to the entropy of the policy at that timestep. Increasing
entropy results in more exploration, which can consequently
improve learning later on. Additionally, converging to a bad
local optimum can be prevented. The problem description
changes to

π∗ = argmax
π

E
τ∼π

∞∑
t=0

γt
(
R(st, at, st+1) + αH (π(·|st))

)
Further details can be found in the corresponding literature
[15].

b) Reward shaping: In order to minimize manual tun-
ing we opted for sparse rewards for both architectures,
with no extra information being encoded in the reward.
For the first architecture this is rather easy, since we have
only two scenarios. If the state of the object in the mutual
workspace correspond to a desired goal state for one of the
two manipulators, the episode is terminated and the object
is placed at its goal, without receiving a negative reward. In
the other case, where the state is not as desired, the episode
continues and a reward of minus one is returned. This way
the episode length is minimized.

rA =

{
0, |θbt+1

t − θg| ≤ ϵ

−1, |θbt+1

t − θg| > ϵ

with θ
bt+1

t indicating the orientation at the goal position,
placed there by robot bt+1.

For architecture B however new ways for an episode
to fail are introduced. In architecture B, since the policy
dictates when to place the object at the desired position, the
object can be placed at the final position at the wrong time.
Additionally, the policy can query the wrong robot, resulting
in either a wrong orientation or an infeasible goal position.
Finally, the policy could never make the decision to take the
final step.

After some minor manual tuning the following sparse
reward function is retrieved

rB =


20, (xt, yt) ≡ (xg, yg) and |θ − θg| ≤ ϵ

−1, (xt, yt) ∈ Mm

−30, (xt, yt) ≡ (xg, yg) and |θ − θg| > ϵ

or (xt, yt) ∨ (xt−1, yt−1) /∈ Mbt

with Mbt indicating the workspace of the robot perform-
ing the action at t. The final case indicates when the robot
needs to pick-up the object outside its manipulation space,
which is infeasible. To avoid ending up in a local minimum,
where the object is placed directly at the goal, resulting in
a reward of -1, a positive reward is given if the goal is
achieved. Additionally, a strong negative reward is returned
for infeasible actions.

c) Hindsight experience replay: Since we are deal-
ing with sparse rewards, when the block is misplaced the
reward provides no additional information except that the
performed sequence of actions does not lead to a successful
goal configuration. It is however possible to act as if the
found configuration was the desired goal, which gives us
extra information. This is exactly what Hindsight Experience
Replay does, for the specific details we refer to [16].

d) Further remarks: SAC is used to train both archi-
tectures. In the first the action has three dimensions, while
the action has four dimensions in architecture B. The latter
is harder to learn, therefore a simplified form of curriculum
learning [17] is implemented. The policy is first trained on
a simpler environment where the allowed mistake on the
orientation is larger. This gives the policy an incentive to
move to the goal position faster, which helps training. By
gradually increasing the difficulty by making the allowed
error smaller, the policy learns eventually in the correct
environment. In practice two training steps are enough in
order to get to the desired accuracy.

In order to train the policy, a significant amount of
episodes need to be performed. Training a large number
of episodes on a real setup would be impractical because
it would take too long, but the deterministic nature of the
problem allow us to use simulation instead. This is because
the policy can be trained without taking motion planning
into account, since the state update rule does not depend
on the motion plan. We only need to calculate the robot
poses at the drop-off and pick-up locations. The trained
policy in simulation will then be executed on the real setup.
However, the accuracy of this translation from simulated to
real environment depends on the accuracy of the models and
the repeatability of the two robotic manipulators. The closed-
loop behavior of the supervisory controller can help mitigate
some of these issues.

C. Related work

A previous method presented by De Witte et al. [12] uses
a discretized version of the workspace, instead of using a
continuous parametrization. A policy is found using DQN
[9], where the optimal action-value function is approximated
using neural networks Q(s,a; θ) ≈ Q∗(s,a). The best action
is then found by taking the action with maximum value
π(s) = maxa Q(s, a;ϕ). Discretizing this shared workspace
results in a high-dimensional solution space that is hard to
solve, resulting in longer training times.

Additionally, an extensive reward shaping and extensive
and complex pretraining, with multiple networks, are re-
quired for architecture B. Architecture A on the other hand
required two policies, due to how the information of the goal
configuration was implemented. Moreover, the policy is only
trained to output a certain set of discrete possible positions. If
this is applied on a real set-up, where the execution of actions
is no longer deterministic, the actual achieved position may
differ, resulting in reduced accuracy of the goal task, as this
position is not yet seen before by the policy. All of these
problems are mostly mitigated in our approach.
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IV. EXPERIMENTAL VALIDATION

A. Set-up

The set-up uses two Lynxmotion AL5A robotic arms with
five degrees of freedom to perform pick-and-place maneuvers
on a square object by grasping a toothpick attached at its
center. The robots are controlled in an open-loop manner,
moving from the pick-up position to the drop-off position.
An Intel RealSense Depth Camera D435 is used to perceive
information from the system, such as the configuration of
the block and the goal.

The current path planning method uses a parametric
trajectory optimization. The trajectory ζ is parametrized in
joint coordinates using interpolating B-splines. The number
of knots m and the degree d determine the number of splines,
N = m + d − 1. In our experiments (m, d) are chosen as
(3, 5). As the problem is purely kinematic and dynamics are
ignored, time parametrization is of no importance and we
parametrize time with an arbitrary variable τ ∈ [0, 1].

ζ(τ ; θ) =

N∑
i=1

Bi,d(τ)θi

Collision avoidance is considered for both the ground and
the robots themselves, with the robots being limited in the
mutual workspace to prevent collisions with each other. The
position in Cartesian coordinates of all the links is evaluated
using 102 intervals. The optimization minimizes the distance
in Cartesian coordinates, with the integral being calculated
with trapezoidal integration.

The path planning can be implemented using any existing
trajectory optimization or motion planning method, it is not
limited to the one used in our approach, due to the decoupling
of the task and motion planning.

B. Implementation

All code is written in Python. The reinforcement learning
algorithms were implemented using the stable baselines 3
package [18].

1) Continuous approximation: A two-dimensional grid of
points at a fixed height, spaced apart 5 mm in each direction,
is sampled. For each point the feasibility is checked for
both robots, resulting in a discrete approximation of the
manipulation spaces. Taking the intersection results in a
discrete approximation of the mutual manipulation space,
which can be used to find the continuous approximation.
The resulting r and r, are 150 and 230 respectively. The
goal and initial configuration positions are sampled from the
union of the two discrete manipulation spaces. These discrete
approximations, together with the continuous approximation
in black, are given in Fig. 4. The base of both robots are
indicated as well.

2) Hyperparameter tuning: An extensive hyperparameter
search is performed for all different architectures using Op-
tuna [19]. The resulting hyperparameters for all continuous
cases can be found in table I. ReLU is used as activation
function and Adam [20] as optimizer. Architecture B is
trained using HER, with five goals being generated from all
states of an episode. For the first architecture HER seems

Fig. 4: Continuous approximation shown on top of discrete
approximations.

to provide no added benefit, which is to be expected. The
maximum allowed episode length is twenty, while taking a
random policy results in an average length of around 10.
This means that using HER results in completed episodes
of length twenty being added to the replay buffer, which is
rather long in comparison to a random policy. When limiting
this maximum episode length to e.g. five, HER could help.
The second architecture clearly benefits from using HER, on
which we will elaborate in the results section. Additionally,
since the final step is not dictated by the policy, the goals
can only be generated from the final state of the episode,
while for architecture B it is possible to generate the goals
from all states in the episode.

TABLE I: Hyperparameters SAC for both architectures.

Hyperparameter Architecture A Architecture B

learning rate 0.0003 0.0005
discount (γ) 0.99 0.99

replay buffer size 105 105

batch size 32 128
learning starts 0 1000
train frequency 32 16

target smoothing coefficient (τ ) 0.01 0.01
number of hidden layers 2 3

number of hidden units per layer 400|300 512

C. Results
The results are compared to the method presented in III-C.

The main improvement can be found in the ease of training
and the higher success rate for architecture B.

1) Training: Training is performed with the optimal hy-
perparameters mentioned previously.

A first comparison is made between the simplified form
of curriculum learning and learning directly in the final
environment. It can be seen, that while training seems to
move towards an optimal point, it does so slower than the
simplified form. This gives a validation for the use of the
curriculum learning, as training speed is increased. On the
other hand, it also shows that curriculum learning is not
required and a policy can be found without it. Here, the
first clear benefit of the method over the discretized method
surfaces, training is much simpler. On top of being simpler,
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Fig. 5: A comparison made between curriculum learning
and no curriculum learning, the switch of environments for
curriculum learning is indicated at step 150,000.

Fig. 6: A comparison made of the mean episode length dur-
ing training for both architectures. Architecture A is trained
for 250,000, while architecture B is trained for 650,000. The
number of steps are scaled for a better comparison.

it is significantly faster for architecture B (2,150,000 vs
650,000 steps).

Secondly we can take a look at the mean episode length
during training for both methods. The main difference is
the use of HER, training architecture B is done using HER,
which can be seen by the sudden decrease in mean episode
length. As shorter episodes that reach their goal are created.
Additionally, since the policy dictates when an episode is
done, even a bad policy will result in shorter episodes.

It can be noted that uniform sampling of α and β will
result in a non-uniform distribution of points in Cartesian
coordinates, because of the changing width. While this seems
suboptimal at first sight, the non-uniform sampling may
benefit the exploration phase. The positions with a higher
density lie on the edges of the mutual manipulation space.
Switches between edges results in a higher change of relative
orientation, thus benefitting the exploration.

2) Validation: We perform a number of experiments with
a randomly sampled goal and start state for all four archi-
tectures, both in simulation as on the set-up. The average
episode length and the success rate are given. The success
rate is given as the percentage of episodes that resulted in a
desired goal; 50 episodes are performed.

The results in simulation and on the setup are given in Fig.

Fig. 7: A comparison made between the discretized version
and the continuous version of the shared workspace, both for
architecture A and B. The success ratios are shown both on
the set-up as in simulation.

7 and 8. A comparison is made with the discretized version of
the shared workspace for both architectures. The first figure
shows the success rate, while the second shows the average
number of steps in an episode. A clear improvement can
be seen when using the continuous representation over the
discretized, especially for architecture B, both on the setup
as in simulation and both in episode length as in success
rate. While the same can be said for architecture A and its
episode length, the success rate is more or less the same.
It shows that for the simpler problem statement this method
doesn’t provide a massive boost in performance, while for the
harder problem statement the parametrization of the mutual
workspace using continuous variables is almost required.

For training in simulation no physics engine was required,
since only the initial xt and final state xt+1 of the motion
plan where needed. However for the evaluation, a physics
engine is used to be as complete as possible. The robots’
dynamics and interaction with the environment are simulated
using PyBullet. By modeling the robot in a physics engine,
we are able to better validate the trained policies.

For architecture B, the possible end state are: (a) Correct
position and orientation, (b) correct position and wrong
orientation, (c) wrong position. The wrong position can be
achieved in two ways, if the wrong robot is asked to perform
the final step it could be possible the position lies outside the
manipulation space of that robot, or if the max amount of
steps is achieved. Of the 50 performed episodes two resulted
in the final state (b) and one in (c) by querying the wrong
robot. For architecture A, all episodes where terminated
before maximum number of steps, so the low success rate is
due to wrong model of the robot. The latter is less of an issue
for architecture B, since the model is not used to dictate the
final step, resulting in a better translation to the set-up.

V. CONCLUSIONS

This work presents a method for enabling multi-robot
manipulation in the presence of under-actuation by utilizing
the shared workspace. The proposed approach involves de-
composing the resulting Task and Motion Planning problem
and using a supervisory control system to output the next
best action in real-time. The next best action is selected from
a continuous parametrization of the shared workspace by a
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Fig. 8: A comparison made between the discretized version
and the continuous version of the shared workspace, both
for architecture A and B. The average number of steps are
shown both on the set-up as in simulation.

parametrized policy. This continuous approximation results
in a simple to train policy, using only sparse rewards, with a
shorter training time and a higher success rate than previous
methods. A translation to a real set-up shows it’s application
in the real-world.

The parametrization of actions into continuous variables
can be extended to other problems as well, enabling us to find
an action sequence by learning a policy. An other example
could be to parametrize the workspace of a single robot,
and combine this with a number of individual actions, which
could be parametrized in a similar way. Cooperation could
also be performed by parametrization of a three-dimensional
workspace, making it for example possible to perform hand-
over actions.

In future work, it may be possible to extend the system
to include more robots or a greater range of possible ac-
tions, and to consider different types of goal configurations.
Another step could be to implement the method with a com-
bined Task and Motion Planning solver, resulting in a faster
combined optimization. Additionally, it could be possible to
give the policy more information of its environment to make
it even more contextual. A variable representing obstacles
could be included in the augmented state, such that the policy
can redirect its next position.
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