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Intelligent Servo Control Strategy for Robot Joints
With Incremental Bayesian Fuzzy Broad Learning

System
Guoyu Zuo, Jiyong Zhou, Daoxiong Gong, Gao Huang

Abstract—Intelligent servo control significantly reduces the
need to adjust control parameters, and is therefore widely
used in robot joint control. However, existing intelligent servo
control strategies for robot joints have problems of computational
redundancy, limited prediction accuracy, and insufficient gener-
alization capability. To solve these problems, this paper proposes
a servo control strategy for robot joints that is based on the
incremental Bayesian fuzzy broad learning system (IBFBLS).
Firstly, we construct an intelligent servo control strategy with
broad learning system on the basis of fuzzy rules to achieve good
self-learning and generalization abilities. Secondly, the learning
parameters of the control strategy are optimized by Bayesian
inference to achieve precise joint servo control. Finally, the
convergence of the control strategy is enhanced by combining it
with Lyapunov theory to constrain the learning parameters of the
proposed control strategy. The feasibility and superiority of the
proposed control strategy are verified by simulation to compare
it with existing intelligent servo control methods. In addition,
experiments are conducted using robot joint test bed. Both the
simulation and experiments verify that the proposed servo control
strategy outperforms other servo control methods with respect
to tracking accuracy, stability, and convergence. The root-mean-
square error in servo control of robot joints was 0.012%, which
has been reduced by 55.56% compared to current state-of-art.

Index Terms—Bayesian inference, fuzzy rules, incremental
broad learning system, intelligent servo control, Lyapunov theory.

I. INTRODUCTION

ROBOTS are widely used in various industries as in-
telligent devices, and their servo control have attracted

substantial attention from researchers [1], [2]. The main aim
of servo control is to improve the control strategy’s precision,
intelligence, and generalization capability [3], [4]. Servo con-
trol of robot joints is a key technology of robot motion and
has a critical impact on the overall robot performance [5].
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Many researchers have designed high-performance strate-
gies for such servo control [6], [7], such as adaptive PID, feed-
back linearization-based methods, and sliding-mode control
(SMC) [8]–[10]. The increasing internal structural complexity
of robot joints significantly increases the cost of accurately
modeling mathematically. The above conventional strategies
cannot be adapted to precise servo control of robot joints
with unknown parameters. To solve this problem, Huang et
al. proposed an integrated interval type-2 fuzzy logic ap-
proach to address the effects of modeling uncertainty and
external disturbances on controller stability [11]. Li et al.
proposed an adaptive fuzzy control scheme for a dual-arm
robot. Their scheme includes an algorithm that uses an approx-
imate Jacobian matrix to address uncertain kinematic control,
and a decentralized fuzzy controller to accommodate motion
uncertainty and unknown disturbances [12]. Fuzzy systems
with good approximation capability can estimate the unknown
dynamics of robot joints with any specific accuracy. Therefore,
the fuzzy system-based control strategy can effectively solve
the problems of motion uncertainty and unknown disturbances
to improve the control accuracy of the strategy [13], [14].
However, these strategies lack self-learning capability and
generalization ability, so they cannot satisfy the requirements
of intelligent servo control of robot joints.

Neural networks with learning and generalization abilities
show superior performance in approximately modeling of the
dynamic of robot joints. They include many adaptive weight
parameters to learn uncertainties and external disturbances,
which improves the servo control accuracy of the robot joints
[15], [16]. To further improve the servo control of robot joints,
He et al. proposed a strategy based on an adaptive fuzzy neural
network (FNN) to ensure control accuracy under unknown
system dynamics and uncertainty disturbances [17]. How-
ever, the FNN-based servo control strategy requires a com-
plex training process to determine the controller parameters,
which consumes a large amount of computational resources.
Moreover, it is necessary to retrain the controller when it
does not satisfy the needs of the application [18]. In recent
years, the broad learning system (BLS) has become widely
used [19]–[22]. The BLS has a simple network structure and
accurate approximation performance. Some researchers have
attempted to apply it to servo control of robot joints [23]–
[25]. Xu et al. proposed an intelligent servo control strategy
based on BLS and derived the controller parameter constraints
using Lyapunov theory to obtain with strong generalization
performance and error convergence [26]. Fei et al. proposed
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a fuzzy broad learning control strategy, consisting of a fuzzy
broad controller and a robust controller, to improve approx-
imation and learning capability [27]. However, this control
strategy does not consider the effects of noise disturbances and
unknown disturbances on servo control accuracy. In addition,
it does not consider the important advantage of the BLS,
namely incremental learning, and therefore the accuracy of
this strategy is adversely affected.

To address these problems, we propose an intelligent servo
control strategy for robot joints with strong generalization
capability, low computational redundancy, and high control
accuracy. The contributions of this paper are as follows:

1) A control strategy based on an incremental Bayesian
fuzzy broad learning system (IBFBLS) is proposed for
the first time and applied to robot joint servo control
to improve generalization performance and control ac-
curacy.

2) The proposed servo control strategy can handle noisy
disturbances or unknown disturbances. In the proposed
strategy, the posteriori probabilistic estimates of the
output and output weights are calculated to efficiently
perform incremental learning in a probabilistic manner,
which improves the performance of the control strategy.

3) Lyapunov theory is combined with the IBFBLS to obtain
constraints on the learning parameters of the proposed
control strategy. This provides the control strategy with
stable convergence capability.

II. PROBLEM STATEMENT AND PRELIMINARY DISCUSSION

This section describes the principles of the robot servo
control system and fuzzy broad learning system (FBLS).

A. Robot Joint Servo Control Strategy
An important part of joint servo control is joint position

control, the control target is the joint can reach to the expected
position. The desired position and desired velocity are known.
The actual position and actual velocity are obtained using the
end-of-joint sensors. In this paper, the desired position, desired
velocity, actual position, and actual velocity are denoted by
dre(t), vre(t), d(t), and v(t), respectively [28], [29]. The
tracking error in the task space is expressed as:{

e1(t) = dre(t)− d(t)
e2(t) = vre(t)− v(t)

(1)

where e1(t) denotes the position tracking bias, e2(t) denotes
the velocity tracking bias. The ultimate goal of the control
system is to ensure that both position tracking bias e1(t) and
velocity tracking bias e2(t) converge to 0. To enhance the
approximation capability of the control strategy, this paper
proposes an objective function to ensure that the velocity
tracking bias e2(t) eventually converges to a value near 0.

min
v(t)

f = |vre(t)− v(t)| (2)

where f denotes the objective optimization function. Approx-
imating of the desired velocity helps the position tracking
bias e1(t) to converge to 0. Following this principle, the
position tracking problem of servo control is regarded as a
minimization problem.

B. Fuzzy Broad Learning System (FBLS)

FBLS is proposed in this paper, which combines the BLS
with fuzzy rules. The key idea of FBLS is to replace the feature
nodes of the BLS with fuzzy subsystems [28]. Suppose that the
input data are denoted by XM×N = [x1,x2, · · · ,xN], where,
xt = [xt1, xt2, · · · , xtM ]. M denotes the number of data in
the vector xt. The fuzzy dataset can then be expressed as
zjti = f ji (xt1, xt2, · · · , xtM ), where f ji denotes the coefficient
of the jth fuzzy dataset, j denotes the jth fuzzy subsystem,
and i denotes the ith fuzzy rule of the jth fuzzy subsystem.
The jth fuzzy subsystem of FBLS is defined as:

zjti = f ji (xt1, xt2, · · · , xtM ) =

M∑
m=1

υjimxtm (3)

where υjim denotes the coefficient of the mth data for xt.
Feature nodes generated by the Gaussian function are the

most suitable for robot joint control [25]. Therefore, the
Gaussian affiliation function of the proposed fuzzy dataset is
defined in (4).

µjim = exp(−(
xtm − cjim

σjim
)

2

) (4)

where σjim and cjim denote width and centroid of the Gaussian
affiliation function, respectively.

The fire strength of the ith fuzzy rule of the jth fuzzy
subsystem is defined as:

τ jti =

M∏
m=1

µjim (xtm) (5)

The weight of the ith fuzzy rule of the jth fuzzy subsystem
is defined as:

ωjti =
τ jti∑I
i=1 τ

j
ti

(6)

where I denotes the number of fuzzy rules of the jth fuzzy
subsystem and i = 1, 2, · · · , I .

The output of the jth fuzzy system with input data xt is
defined as:

zjt =
[
ωjt1v

j
t1, ω

j
t2v

j
t2, · · · , ω

j
tIv

j
tI

]
(7)

The output of the jth fuzzy system with input data XM×N

is defined as:
zj =

[
zj1, z

j
2, · · · , z

j
N

]
(8)

The output of the l fuzzy subsystem is then defined as:

Zl =
[
z1, z2, · · · , zl

]
(9)

The enhancement network is based on the enhancement
nodes generated by the feature nodes of fuzzy logic. The
principle is expressed as follows:

h = ψ
(
αhq
· Zl + βhq

)
(10)

where ψ = 1/(1 + exp(·))− 1 denotes the activation function
of the enhancement nodes. αhq denotes the weight vector of
the enhancement nodes. βhq

denotes the offset parameters of
the enhancement nodes. All these parameters are randomly
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Fig. 1. Intelligent servo control principle based on IBFBLS. The top part of
the figure shows the network model of IBFBLS. The model contains inputs,
fuzzy sets, fuzzy nodes, augmented nodes, and outputs. The lower part of the
figure shows the robot joint’s control strategy.

generated. The enhancement nodes generated by the FBLS
are then represented as:

Hr = [h1,h2, · · · ,hr] (11)

The FBLS control system generates nodes as shown in (12).

Fl+r = [Zl,Hr] (12)

Finally, the FBLS can be described as

Y(X) =
∑l+r
k=1wkF

l+r (13)

where wk denotes the output matrix weights, which is gener-
ated by the network training.

III. IBFBLS SERVO CONTROL STRATEGY

This section explains the servo control strategy based on the
IBFBLS, which achieves learning ability and generalization of
the servo control of robot joints, and it’s principle is shown in
Figure 1. It comprises three main modules: the control strategy
based on the IFBLS, ehe Bayesian-based Regression module,
and the stability analysis based on Lyapunov theory.

A. Servo Control Strategy Based on IFBLS

When designing a control strategy, it is necessary to
construct a reasonable transfer function to obtain corrected
velocity command vcor(t) and corrected position command
dcor(t+ 1) [26]. This principle can be expressed as:

dcor(t+ 1) = d(t) +

∫ t+∆t

t

vcor(t)dt (14)

where d(t) denotes the actual position at moment t, ∆t denotes
the time interval, which is the time difference between t and
t+ 1.

It is worth stating that velocity tracking error e2 used in
this paper is not the difference between actual velocity vre(t)

and desired velocity v(t), but is obtained by calculating the
position tracking error e1. The design of the advanced control
strategy can be described abstractly as follows.

τ = e2 = f(e1) (15)

where the position tracking error e1 is the input of the control
strategy, and τ denotes the control strategy, which in servo
control denotes the velocity correction command.

The IFBLS-based position servo control strategy can then
be expressed as:

τ =

l∑
p=1

wpF (e1) +

l+r∑
q=l

wq
[
ψ
(
αhq · Zl + βhq

)
− λqεq

]
+

l+r+o∑
u=l+r

wu
[
ψ
(
αhu
· Zl + βhu

)
− λuεu

]
(16)

where wp, wq , and wu denote the output weights of fuzzy
nodes, enhancement nodes, and incremental enhancement
nodes, respectively. λq and λu denote the compression fac-
tors, εq and εu denote the residual errors. Introducting the
compression factor and residual error effectively improves the
convergence speed of the control strategy [22]. F(·) denotes
the fuzzy rule.

To design a controller that has excellent approximation
capability, the model training process is treated as an opti-
mization problem.

min
v(t)

∑M
m=1||

l∑
p=1

wpZ
l +

l+r∑
q=l

wq(H
r − λqεq)

+

l+r+o∑
u=l+r

wu(G
o − λuεu)− τdem ||

(17)

where Go = ψ
(
αhu · Zl + βhu

)
represents the new enhance-

ment nodes, τdem denotes the desired control output.

B. Bayesian-based Regression Algorithm

The regularization parameters of ridge regression are usually
predetermined manually, which results in low predictive accu-
racy. Bayesian inference provides an estimate of the posterior
probability of the output and the output weight. Therefore,
Bayesian regression algorithms are more suitable for position
tracking of robot joints than the ridge regression [30]. Inspired
by this observation, Bayesian inference is combined with the
BLS to design the regression algorithm of the IBFBLS.

The output of the IBFBLS can be expressed as

Λ = Fw + δ (18)

where δ denotes a random noise matrix that represents the
interference of the external environment. F denotes the nodes
of the proposed control policy, w denotes the weight of
the nodes. To facilitate calculation, this noise is defined as
Gaussian noise with mean of 0 and variance of ϕ−1.

The likelihood function of output of the control strategy can
be expressed as:

p(w|ρ) = N (w|0, ρ−1E) (19)
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According to Bayesian inference, the posterior distribution
of weight w is:

p(w|t,F, ϕ, ρ) =
p(Λ|F,w)p(w)

p(Λ|F)
= N (w|η, ϑ) (20)

where
ϑ = (ρE + ϕFTF)

−1
(21)

and
η = ϕϑFTΛ (22)

According to (21) and (22), the marginal likelihood is
obtained by integrating over w.

p (Λ|F, ϕ, ρ) =
( ρ

2π

)N
2
( ϕ

2π

)M
2

exp {−Ω (η)}

· (2π)
M
2
∣∣ϑ−1

∣∣− 1
2

(23)

where Ω(η) = ϕ
2 ‖Λ− Fη‖+ ρ

2 . The parameters ρ and ϕ are
updated iteratively by Eq.(24) and Eq.(25).

ϕ =

∑M
a=1 (1− ϕηa)

ηTη
(24)

ρ =
N −

∑M
a=1 (1− ϕηa)

‖Λ− Fη‖2
(25)

To ensure that the control strategy has a high predictive
performance, the incremental Bayesian regression is designed
in this paper. The output of the incremental control strategy is
F′ = [F | G]. Bringing F′ into (21) produces (26).

ϑ̂ =

(
ϑ+ QBQT −QB
−BQT B

)
(26)

where, Q = ρϑFTG and B =
(ϕE + ρGTG− ρ2GTFϑFG)

−1. Equation (26) is then
brought into (22) to obtain

η̂ =

(
η + ρ2ϑFTGBGT (Fη −Λ)

−ρBGT (Fη −Λ)

)
(27)

The output weights are updated through the above equation.
The hyperparameters are also updated to perform the next
iteration and update the output weights.

ϕ̂ =
ξ̂

η̂Tη̂
(28)

ρ̂ =
N − ξ̂

‖Λ− F′η̂‖2
(29)

where ξ̂ = B− ϕ̂
(
trace

(
ϑ+ QBQT + B

))
.

C. System Stability Analysis

The work in this paper is based on the assumption that the
low-level control system is in an ideal state. It is assumed
that the low-level control system is stable and reliable and
does not affect the high-level system. Now Lyapunov theory
is introduced to analyze and prove the stability of the pro-
posed control strategy. Using the stability analysis principle of
Lyapunov theory, the control strategy is designed as a global

asymptotically stable system [31]. Therefore, the following
constraints need to be satisfied:


V (e1, e2) > 0

V̇ (e1, e2) < 0
‖V (x)− V (x∗)‖ → 0, x −→∞

(30)

To satisfy the requirements of (30) for system stability, the
Lyapunov stability function is defined as

V =
1

2
e1

Te1 +
1

2
e2

TKe2 (31)

The analysis shows that the first and third inequalities of
(30) are satisfied. It is now necessary to determine whether
the second inequality is satisfied.

V̇ = e1
Tė1 + e2

TKė2 (32)

Equation (32) contains four variables e1, ė1, e2 and ė2. In
the proposed control strategy, e2 is derived from e1, that is,
e2 = ė1. After analysis, e1, ė1, and e2 are already defiend.
Therefore, only ė2 needs to be calculated. ]

ė2 =

l∑
p=1

d (F (e1))

de
wpė1 +

l+r∑
q=r

dwqψ(∆)

d∆
wqαhq

· d (F (e1))

de1
+

l+r+o∑
u=l+r

dwuψ(Ξ)

dΞ
wuαhu

d (F (e1))

de1

(33)

where, 4 = αhq · Zl + βhq and Ξ = αhu · Zl + βhu . The
derivative of the activation function is greater than 0.

The V̇ can be written as:

V̇ =eT1 [

l∑
p=1

wpF (e1) +

l+r∑
q=l

wq [ψ(∆)− λqεq]+

l+r+o∑
u=l+r

wu [ψ(Ξ)− λuεu]] + e2
TK[

l∑
p=1

d (F (e1))

de
wpė1

+

l+r∑
q=l

dψ(∆)

d∆
wqαhq

d (F (e1))

de1

+

l+r+o∑
u=l+r

dψ(Ξ)

dΞ
wuαhu

d (F (e1))

de1
]

(34)

For convenience, the first term of (34) is defined as R1 and
the second term as R2 in this paper. The R1 term can be
simplified as follows.
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R1 =eT1

l∑
p=1

wpF (e1)︸ ︷︷ ︸
I

+ eT1

l+r∑
q=l

wqψ̇(sm)αhq
· Zl︸ ︷︷ ︸

II

+ eT1

u+l+o∑
u+l

wuψ̇(sm)αhq · Zl︸ ︷︷ ︸
III

+ eT1

l+r∑
q=l

wqβhq︸ ︷︷ ︸
IV

+ eT1

l+r+o∑
u=l+r

wuβhu︸ ︷︷ ︸
V

+ eT1

r∑
q=1

wqλqεq︸ ︷︷ ︸
V I

+ eT1

o∑
u=1

wuλuεu︸ ︷︷ ︸
V II

(35)

where ψ(0) represents the original state. ψ̇(sm) =
ψ(4)−ψ(0)

(4−0) or ψ̇(sm) = ψ(0)−ψ(4)
(0−4) . si ∈ (4, 0) or si ∈

(0,4)). In addition, ψ(0) = 0, ψ̇(0) = 0.
Similarly, R2 can be simplified as follows:

R2 = e2
TK

l∑
p=1

d (F (e1))

de
wpė1︸ ︷︷ ︸

V III

+ e2
T
l+r∑
q=l

dψ(∆)

d∆
wqαhq

d (F (e1))

de1︸ ︷︷ ︸
IX

+ e2
T
l+r+o∑
u=l+r

dψ(Ξ)

dΞ
wqαhu

d (F (e1))

de1︸ ︷︷ ︸
X

(36)

To satisfy the constraints of (30), the sum of the terms
from I to X needs to be negative at all times. The tracking
bias between the terms is difficult to determine. Therefore, the
general case is to limit the parameters to ensure that each term
is negative. Careful analysis reveals that the derivatives and
slopes are positive; that is, the parameters dψ(∆i)

d∆i
, d(F(e1))

de1
,

F (e1), eT1 , ė1 and e2
T are positive. The following conditions

need to be satisfied.
wp < 0

wqαhq
< 0, wuαhu

< 0
wqβhq < 0, wuβhu < 0
wqλqεq < 0, w3λuεu < 0

(37)

The parameters of the control strategy need to satisfy the
constraints of (37) to satisfy the stability requirements.

IV. SIMULATION

Signal tracking and position tracking simulations were con-
ducted to verify the performance of the IBFBLS-based control
strategy. In this section, the simulations are designed, and the
results are compared with the results of existing representative
learning-based control strategies.
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Fig. 2. Reference trajectory and demo trajectories. Seven demo trajectories
was tracked performed from different starting points were selected.

A. Signal Tracking Simulation of Robot End-of-Joint Output

To obtain the demo data required for training the control
strategy, this paper defined the sinusoidal trajectory with an
amplitude of 1 and a frequency of 1 as the reference trajectory.
Tracking was performed from different starting points using
sliding-mode control in MATLAB, and seven well-converged
demo trajectories were selected. The computation time of these
tracks was 6s, and 2000 data points were saved. The reference
trajectory and the several demo trajectories were shown in Fig.
2. The controller input was the position error of the demo data.
The output of the controller was the correction velocity. The
position error of the demo data was obtained by converging
the tracking trajectory with the reference trajectory, and the
velocity of the tracking trajectory was the target velocity.

The acquired demo data were divided into a training set
and a test set. The training set included four of the conver-
gent tracks, and the remaining three convergent tracks were
included in the test set. The experiment was conducted on
a server running Windows 10. The programming language
was Python 3.7. The computing platform used for compilation
and testing was PyTorch with CUDA v1.0. The hardware
configuration included an Intel Core i9-10900X CPU at 3.70
GHz, an NVIDIA RTX 3090 Ti GPU, and 64 GB of memory.
The proposed IBFBLS algorithm was compared with the SMC,
BLS, FBLS, and IBLS algorithms. Five subsets based on data
distribution are negligible bias (NB), low bias (LB), moderate
bias (MB), high bias (HB) and very high bias (VB). The fuzzy
rule can be expressed as: if NB then NB; if LB then LB; if MB
then MB; if HB then HB; if VB then VB. The initial number of
fuzzy nodes of FBLS and IBFBLS was 10. The initial number
of enhancement nodes for the IBLS and IBFBLS was 10, the
number for training epochs was 10, the step size was 100, and
the expected accuracy was 0.90.

The results of the signal tracking simulation are visualized
in Fig. 3. The BLS and FBLS maintained good tracking
performance in the initial stage. In the middle and end stages,
that is, t = [3, 4] and t = [5, 6], the correction velocity oscil-
lated substantially, so the simulation results showed substantial
deviation from the expected velocity and expected position.
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Fig. 3. Position tracking simulation results of demo trajectory 2 for different
control methods: (a) X-axis velocity bias; (b) Y-axis velocity bias; (c) X-axis
position bias; (d) Y-axis position bias.

The reason for this phenomenon may be that BLS and FBLS
have no constraints. Both IBLS and IBFBLS could always
converge to the reference trajectory. It is worth noting that
IBLS is also an algorithm without constraints. However, it
achieved better performance than non-incremental BLS. This
aptly illustrates that the IBLS approximation performance has
some advantages in trajectory tracking. However, the velocity
of IBLS correction oscillated to some extent. This oscillation
can be observed for the periods t = [3, 4] and t = [5.5, 6]
in Fig. 3(a). The IBLS position always deviated from the
reference position, as shown in Fig. 3(d). In contrast, the
proposed servo control strategy performed almost no oscil-
lation. The generated correction velocity was consistent with
the reference velocity, and the generated position was consis-
tent with the reference position. Overall, the signal tracking
simulation results verify that the proposed control strategy
has the best tracking performance. It effectively improves the
control ability of the output signal, which in turn improves the
precision of robot joint positioning.

B. Position Tracking Simulation of Robot Joint End-Effectors

This paper defined three different trajectories: l1: y = 0,
l2: y = x − 1, and l3: (x− 1)

2
+ y2 = 1. As shown in the

signal tracking simulations, the three trajectories were tracked
from different starting points using sliding-mode control in
MATLAB. The trajectories were run for 4s, and 2000 data
points were saved. The most convergent tracking trajectory
was selected for each of the three reference trajectories. The
reference trajectories and convergent tracking trajectories are
shown in Fig. 4.

The results are visualized in Fig. 5. For the trajectories
shown in Fig. 5(a) and (b), all methods maintained good
tracking performance. This maybe because the demo trajec-
tories l1 and l2 are linear and the tracking is not difficult.
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Fig. 4. Reference trajectory and demo trajectory. The dashed line represents
the desired trajectory and the realized represents the demo trajectory
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Fig. 5. Simulated position tracking simulation results for different control
methods: (a) Demo trajectory 1; (b) Demo trajectory 2.

However, there was some degree of oscillation in the tracking
performed by BLS and FBLS in Fig. 5(b). To show the
tracking performance of each control strategy in more detail,
the demo trajectory l3 was taken as an example, and the
velocity bias and position bias of the tracking trajectory and
the demo trajectory were analyzed. The velocity biases of
BLS and FBLS oscillated substantially, and their position
biases did not converge to 0, as shown in Fig.6. The velocity
biases of IBLS and IBFBLS oscillated only slightly, and their
position biases could always converge to 0. However, IBLS
was inferior to IBFBLS with respect to the convergence of the
position bias. As shown in Fig. 6(d), the position bias of IBLS
eventually failed to converge to 0, whereas the position bias
of IBFBLS eventually converged to a value near 0. Accurate
position tracking of the end effector is conducive to promoting
intelligent servo control of robot joints, which is a significant
advantage for autonomous robot control.

In this paper, we introduce the root-mean-square error
(RMSE) [32] for quantitative evaluation of signal tracking and
position tracking, as shown in Table I. The RMSE values
of BLS and FBLS are significantly higher than those of
IBLS and IBFBLS, which also verifies the advantages of the
incremental control strategy at the quantitative comparison
level. The data show that the RMSE value of IBFBLS is the
smallest. The RMSE in signal tracking was 0.012%, which
has been reduced by 55.56% compared to IFBLS. The RMSE
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Fig. 6. Simulated velocity bias and position bias of demo trajectory 3 for
different control models: (a) X-axis velocity bias; (b) Y-axis velocity bias; (c)
X-axis position bias; (d) Y-axis position bias.

TABLE I
THE RMSE OF SIGNAL TRACKING AND POSITION TRACKING.(UNIT: %)

Control strategy BLS FBLS IFBLS IBFBLS
Signal tracking 0.926 0.722 0.027 0.012

Position tracking 1.278 0.559 0.246 0.045
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Fig. 7. Prototype of the rotary joint testbed. The left picture shows the
hardware of the system, and the right picture shows the internal structure
and sensor configuration of the joint platform.

in position tracking was 0.045%, which has been reduced by
81.7% compared to IFBLS.

V. EXPERIMENT AND DISCUSSION

The practicality and effectiveness of the proposed algorithm
were verified with a rotary joint prototype, and the structure
was shown in Fig. 7. The testbed could collect the torque,
position, current, and other information synchronously in
real time to simulate the robot’s working environment and
accurately tested the joint force control.

In this experiment, the controller trained as illustrated in Fig.
2 was used to control the rotating joint testbed. The high-level
control commands were computed with the proposed method,
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Fig. 8. Input and output of the rotary joint test platform: (a) input of the test
platform; (b) output of the test platform.
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Fig. 9. Snapshots of control process of the robot joint test platform. Four
different moments are shown as follows: (a) indicates the initial position; (b),
(c), and (d) indicate the state at different positions.
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Fig. 10. Experimental results of the rotary joint testbed: (a) corrected velocity;
(b) tracking trajectory; (c) velocity bias; (d) position bias.

whereas the low-level execution system was provided by the
system of the testbed. An electrical signal was provided as
an input to control the testbed, with a running time of 30s.
The inputs and outputs of the testbed are shown in Fig. 8.
The initial position was defined as θ = 10, and the trained
controller was used to perform the position tracking control
task, shown in Fig. 9.

The experimental results are shown in Fig. 10 to measure



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. X, NO. X, AUGUST 202X 8

the effectiveness of the model more objectively. These results
show that BLS and FBLS oscillated substantially during
velocity tracking. This led to the deviation of the desired
position from the actual position, as shown in Fig. 10(d). The
tracking performance of IBLS controller was better than that
of BLS and FBLS controllers. However, IBLS was inferior
to IBFBLS with respect to the convergence of position bias.
The performance of IBFBLS controller was generally the best.
However, there was still some bias in the tracking: there
was a small oscillation in the velocity bias, shown in Fig.
10(c), and the position bias finally failed to converge to 0, as
shown in Fig. 10(d). The reason for this situation may be that
physical experiments have more uncertainties than simulations.
In particular, some degree of interference may be present in
the low-level execution system of the joint.

VI. CONCLUSION

This paper proposed an intelligent servo control strategy
for robot joints based on IBFBLS. This was combined with
Lyapunov theory to design reasonable constraints for the
control strategy. Simulations and experiments verified the
proposed control strategy, which is superior to existing control
strategies in most respects. However, the proposed strategy is
based on the assumption that the low-level execution system is
in the ideal state. In reality, the low-level execution system may
have a substantial impact on the output. In future work, the
internal structural parameters of the robot joint will be further
explored and considered in our proposed end-to-end intelligent
control system. Meanwhile, the algorithm performance will be
further optimized in combination with constraint mechanism
to mitigate oscillation and improve the joint control accuracy.
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