
Efficient Trajectory Planning and Control for USV with Vessel
Dynamics and Differential Flatness

Tao Huang1,2, Zhenfeng Xue1,2, Zhe Chen1,2, Yong Liu1,2

Abstract— Unmanned surface vessels (USVs) are widely used
in ocean exploration and environmental protection. To ensure
that USV can successfully perform its mission, trajectory plan-
ning and motion tracking are the two most critical technologies.
This paper proposes a novel trajectory generation and tracking
method for USV based on optimization theory. Specifically, the
USV dynamic model is combined with differential flatness, so
that the trajectory can be generated by dynamic RRT∗ in a
linear invariant system expression form under the objective of
optimal boundary value. We adjust the trajectory through local
optimization to reduce the number of samples and improve
efficiency. The dynamic constraints are considered in the opti-
mization process so that the generated trajectory conforms to
the kinematic characteristics of the under-actuated hull, making
tracking easier. Finally, motion tracking is added with model
predictive control under a sequential quadratic programming
problem. Simulated results show that the planned trajectory is
more consistent with the kinematic characteristics of USV, and
the tracking accuracy remains at a higher level.

I. INTRODUCTION

Unmanned surface vehicles (USVs) are designed to relieve
human labor in various water surface missions, such as
surface cleaning, cyanobacteria treatment, cargo transporta-
tion, and military reconnaissance. It mainly perceives and
maps the surrounding environment through shipborne radar
or camera and then automatically performs path planning
and motion control [1], [2], [3]. In the traveling process,
the USV must accurately avoid various static and dynamic
environmental obstacles. To ensure that USV can complete
its mission autonomously successfully, obstacle avoidance
trajectory planning [4] and motion control [5] are the two
most critical technologies.

However, current trajectory planning algorithms are usu-
ally modified directly from other similar unmanned plat-
forms, such as unmanned aerial vehicles (UAV) or automated
guided vehicles (AGV), which ignores the inherent kinematic
characteristics of USV and thus degrades the motion tracking
control performance. We usually regard the USV as a system
with a three degree of freedom, i.e., surge, sway, and yaw,
but the drive dimension only includes propeller thrust along
the surge axis and its torque along the yaw axis. This makes
the generated path hard to be tracked for USV due to the
lack of relevance between path planning and tracking.

This paper proposes a novel trajectory planning and con-
trol method designed explicitly for USV. Under the circum-

1Tao Huang, Zhenfeng Xue, Zhe Chen and Yong Liu are with Institute
of Cyber-Systems and Control, Zhejiang University, Hangzhou, China

2Tao Huang, Zhenfeng Xue, Zhe Chen and Yong Liu are Intelligent
Perception and Control Center, Huzhou Institute of Zhejiang University,
Huzhou, China (Zhenfeng Xue and Yong Liu are the corresponding authors,
zfxue0903@zju.edu.cn, yongliu@iipc.zju.edu.cn)

Fig. 1. A composite image of USV sailing in obstacle environment with
planned trajectory that fits the dynamic characteristics.

stance that the global map is assumed to be known, the dy-
namic RRT∗ algorithm is first applied to generate the initial
obstacle avoidance trajectory. In the process of constructing
the sampling interval, we propose to combine the Dubins
curve [6] and A∗ algorithm because the smoothness of the
Dubins curve fit the hull dynamics well. After that, the path
planning problem is expressed as a linear time invariant (LTI)
form, and trajectory optimization is established concerning
the path’s spatial quality, such as smoothness, obstacle
avoidance, and vessel dynamics. Different from the existing
methods [4], [7] that directly use the dynamic model of the
USV system as the equality constraint in the trajectory gener-
ation process, which causes a vast computational burden and
unstable generation results. Inspired by related work on UAV
differential flatness [8], [9], we use differential flatness to
describe the USV dynamic system to solve the optimization
problem. Our proposed method dramatically improves the
optimization efficiency, and the usage of differential flatness
can connect path planning with motion control well and make
the subsequent motion tracking control more accurate.

The effect of the proposed path planning algorithm is
illustrated in Fig. 1, from which the USV can travel across
the map of multiple obstacles efficiently. The generated
path is smooth enough to be consistent with the motion
characteristics of the USV. In the subsequent motion control
process, we successfully combine the differential flatness
of the system with the nonlinear model predictive control
(NMPC). A quadratic optimization problem about the error
between a given trajectory state and the forward prediction
state is constructed and cyclically solved. The tracking
accuracy remains at a high level during the rapid operation
of the USV, no matter whether there is directional water
interference.

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 1273

II. RELATED WORKS

A. Path planning for USV

The motion planning algorithm for USV includes two es-
sential contents, i.e., path generation, and obstacle avoidance.
Path generation makes the USV quickly acquire the feasible
route to the mission target based on the map information.
Han et al. [10] proposed Non-uniform Theta* to establish
the mapping relation containing the parent node and min-
imum path-cost of each cell. In addition to the traditional
graph search methods [11], there are also some valuable
applications based on reinforcement learning [12] in the path
planning problems. Wen et al. [4] proposed a hierarchical
trajectory planning that constructs an optimization problem
based on RRT∗ algorithm and dynamic model of USV. Du et
al. [7] modeled the problem in the state space and proposed
to sample a good trajectory based on motion primitives. In
order to effectively describe obstacle information, various
improved artificial potential field (APF) methods [13] are
used in USV obstacle description, and obstacle avoidance
strategy in a complex water environment. Compared with
the above methods, this paper proposes a USV trajectory
optimization algorithm that combines the Dubins curve [6]
and the dynamic RRT∗ to improve the sampling efficiency.
While stably generating the navigation trajectory that meets
the motion characteristics of USV, it ensures real-time per-
formance and quick response to unknown obstacles.

B. Motion control for USV

After the feasible navigation trajectory is obtained, ro-
bust trajectory tracking is another key component to re-
alize the autonomous navigation of USV. In the field of
USV motion control, different control methods have been
proposed, such as sliding mode control based on adaptive
neural network(NN) [14], deep reinforcement learning-based
adaptive control [15] and model predictive control [3]. Sarda
et al. [16] design a nonlinear back stepping PD controller
to reach and maintain a specific configuration of heading
and position in environments of uncertain wind, current
and wave disturbances. These control methods deal well
with the problem of robust tracking of the USV path in
the presence of external disturbances. However, these works
generally only focus on the tracking of the USV trajectory
or simply consider the planning task of the USV path, and
ignore the efficiency of directly using the generated path
for tracking control. In Han’s work [17], the kinematic
model of USV is added to path generation to make the
navigation more suitable for USV tracking control. However,
the computational burden and algorithm stability become
challenging problems. Referring to [8], [18], this paper
proposes the differential flatness property of the USV motion
system to simplify the kinematic model as an algebraic
expression of the position and its higher order derivatives.
It effectively connects the navigation motion planning with
the USV tracking control problem so that the USV can more
stably follow the trajectory and improve the stability and
success rate.

Fig. 2. USV earth-fixed and body-fixed coordinate frames.

III. DESCRIPTION OF USV SYSTEM

A USV is an under-actuated system with six degrees of
freedom. When its dynamic constraints are directly embed-
ded into path planning and motion control, the results could
be unstable. One feasible solution is to use flatness property
to describe the system.

A. USV discrete model

As shown in Fig. 2, a USV with kinematics and dynamics
in earth-fixed and body-fixed frames can be modeled by{

η̇ = R(η)ν

Mν̇ = τ −C(ν)ν −Dν,
(1)

where η = [x, y, ϕ]> and ν = [u, v, r]> are position,
heading and velocity vectors in the earth-fixed and body-
fixed frames respectively. R(η) is the rotation matrix, and
M is positive-definite inertia matrix. C(ν) is the Coriolis
and centripetal force matrix, and D is linear hydrodynamic
damping matrix. τ = [τu, τv, τr]

> is the thrust matrix.
For simplicity, considering a catamaran, we suppose the

hull is symmetrical about the u-axis and v-axis. The con-
straint of v-axis symmetry is over strict, but the practice
has proved it is almost feasible for a catamaran. Thus, the
relevant matrix can be expressed as

M = diag{m1,m1,m2}, (2)

C(ν) =

 0 0 −m2v
0 0 m1u

m2v −m1u 0

 , (3)

D = diag{d1, d2, d3}, (4)

where m1 = m+ma, m2 = Iz + nz . ma and nz represent
the added mass due to water flow. The thrust matrix can be
expressed as

τ =

 Fr + Fl
0

b · (Fr − Fl)

 . (5)

1274

Combined with the above equations, the USV dynamic
model is rewritten as the form of state equation as follow

ẋ(t) = f(x(t),u(t)), (6)

where the state and input of system is x = [x, y, ϕ, u, v, r]>

and u = [τu, τr]
> respectively. In order to reflect the motion

characteristics of USV in discrete time domain, we use the
explicit 4th order Runge Kutta method to calculate the form

xi+1(t) = fRK4(xi(t),ui(t), ∆t), (7)

where ∆t is the discrete step. There are unknown hydro-
dynamic parameters h = [m1,m2, d1, d2, d3]> in the above
USV system model, which will be used in subsequent plan-
ning and control methods. Based on Eq. 7, we use sampled
USV system motion state data Xs = [x0,x1, ...,xk]> and
thrust data Us = [u0,u1, ...,uk]>with discrete step ∆t to
estimate h with the following optimization problem

min
h

k∑
i=0

ε(i)>Ωε(i)

s.t. hl ≤ h ≤ hu
xpredi+1 = fRK4(Xs(i),Us(i), ∆t,h), i ∈ [0, k − 1]

ε(i) = Xs(i)− xpredi ,

(8)

where ε(i) is the deviation between real state data Xs(i)
and predicted data xpredi , hl and hu are the lower and upper
boundary of hydrodynamic parameters respectively and Ω is
weight matrix. The solution can be solved by Gauss Newton
Hessian approximation method with the help of Casadi [19]
optimization library and be used in section VI finally.

B. Differential flatness

Due to the USV system is under-actuated and has nonholo-
nomic constraints, real-time planning and accurate trajectory
control still exist challenges. Wen et al. [4] try to insert the
dynamic model of the USV system as the equality constraint
into trajectory generation so that the generated trajectory
meets the motion constraints of USV. However, this leads to
a heavy computational burden and unstable results. Similar
to [20], it is feasible to simplify the problem that USV model
constraints need to be considered in trajectory generation by
using the flat property of the system.

According to [5], USV system is controllable and has
differential flatness. Then the system has a flat output p(t) =
[x(t), y(t)]> ∈ Rm, implying the state and input can be
expressed in the algebraic form of derivatives using only
p(t) and its finite order [18],{

x(t) = φ0(p(t), ṗ(t), p̈(t),p(3)(t)),

u(t) = φ1(p(t), ṗ(t), p̈(t),p(3)(t),p(4)(t)),
(9)

where φ0 and φ1are the flatness transformation. The highest
derivative order of p in Eq. 9 is equal to 4. In other words,
the polynomial expression for p needs to reach at least 5-th
order to ensure smoothness [8].

Fig. 3. An illustration of the path search process. The black path obtained
by Dubins curve has several collision points pc, which will be moved outside
the collision with a safe distance, resulting the green path.

Algorithm 1 KinodynamicTrajectoryP lan
Input: Environment env, SamplingTree ζ, PlanningState X
Output: Trajectory Γ
1: Initialize: ζs ← Xstart, ζg ← Xgoal
2: Pt ← TopoPathF ind(env)
3: for i = 1 to n do
4: Xrand ← SampleState(env,pt)
5: Xfront,Xback ←NeighborF ind(ζs, ζg,Xrand)
6: Xs ← TreeGrow(Xback,Xrand)
7: if Xs not empty then
8: ζs ← ζs ∪ Xrand,Xs
9: Xg ← TreeGrow(Xfront,Xrand)

10: if Xg not empty then
11: ζg ← ζg ∪ Xrand,Xg
12: Rewire(ζs, ζg,Xrand)
13: if Xrand ∈ ζs ∧ Xrand ∈ ζg then
14: get one solution
15: Γ ← Recall(ζs, ζg)
16: TrajectoryOptimize(Γ)
17: return Γ

IV. TRAJECTORY GENERATION

In a complex water environment, USV trajectory gen-
eration faces a real-time problem and the feasibility of
trajectory execution. Based on the optimized dynamic RRT∗

framework, we can generate a trajectory that meets the
execution of USV. Then the sampling state optimization
method is added to the sampling tree expansion process to
improve its speed.

A. Path searching

The main process of the dynamic RRT∗ framework is
shown in Algorithm 1. By expanding two sampling trees ζs
and ζg , feasible trajectory from Xinit to Xgoal is searched
rapidly. In order to contain the USV nonholonomic con-
straints in the trajectory and improve the efficiency and sta-
bility of sampling, we combine the Dubins and A∗ algorithms
to generate the critical topological path points Pt, illustrated
in Fig. 3. It is suitable for an under-actuated system to use

1275

the Dubins curve here due to its smoothness. Based on this,
the sampling interval is constructed to reduce the sampling
of outside areas effectively. The Steer() function in the
TreeGrow() and Rewire() steps constructs the transfer
trajectory from Xrand to sampling tree ζs and ζg that satisfies
the USV dynamics. In the next part, we will introduce to
use of closed form minimal value cost function to ensure
stability and efficiency. If the sampling status Xrand exists
in the sampling tree ζs and ζg simultaneously, then a feasible
trajectory is searched.

In the traditional RRT∗ framework, the discarding method
is adopted when the sampling state cannot be connected to
the sampling tree due to obstacles or dynamic constraints.
It increases the time-consuming of the algorithm. To reduce
the occurrence of this situation, we use optimization method
to adjust the inappropriate transfer trajectory locally so that
the trajectory meets the feasibility requirements.

B. Trajectory planning with flatness

In section III-B, the differential flatness of USV has been
described. Based on this system’s characteristics, we only
need to pay attention to the flat output z(t) and its higher
derivatives when considering the planning state space of
trajectory. Here, we use a linear time invariant (LTI) system
to express the motion characteristics of the system, and the
trajectory can be denoted as a parametric polynomial about
time. The state equation of the USV system is expressed as

Ẋ (t) = AX (t) +BU(t),

A =

[
0 I
0 0

]
, B =

[
0
I

]
,

X (t) = [p(t),v(t),a(t)]
>
, U(t) = j(t),

(10)

where X (t) represents USV planning state in global-fixed
coordinate frame, including position p(t), velocity v(t) and
acceleration a(t) and U(t) is denoted as the input of LTI
system. Therefore, the goal of trajectory generation is to
calculate a cubic differentiable trajectory polynomial. The
aim is to guide the USV from initial state Xinit to final
state Xend along the time, i.e., the optimal boundary value
problem (OBVP). Similar to [21], the following cost function
needs to be optimized.

Jseg =

∫ T

0

(
σ +

1

2
‖U(t)‖2

)
dt, (11)

where σ denotes the weight of time. Based on the cost
Eq. 11, we can obtain the expression of the optimal trajectory
from Xinit to Xend with a closed form solution by using
Pontryagin minimization method.

X (T) =

 α
120T

5 + β
24T

4 + γ
6T

3 + a0

2 T
2 + v0T + p0

α
24T

4 + β
6T

3 + γ
2T

2 + a0T + v0
α
6 T

3 + β
2T

2 + γT + a0

U(T) =

α

2
T 2 + βT + γ,

(12)
where Xinit = [p0,v0,a0]> and the parameters α, β and
γ can be expressed by Xinit and Xend, referring to [21].

Algorithm 2 TreeGrow
Input: Environment env, SamplingTree ζ,

NeighborState Xn SamplingState Xrand
Output: ParentState Xparent
1: Initialize: Xparent ← null, costmin ←∞
2: for Xcur in Xn do
3: Γseg ← Steer(Xcur,Xrand)
4: if FeasibilityCheck(Γseg, env) then
5: if TrajCost(Γseg) < costmin then
6: Xparent ← Xcur,
7: costmin ← TrajCost(Γseg)

8: else
9: Γseg ← TrajectoryOptimize(Γseg, env)

10: if FeasibilityCheck(Γseg, env) then
11: Xparent ← Xcur,
12: costmin ← TrajCost(Γseg)

13: return Xparent

According to the form of U(T), Eq. 11 can be rewritten as

Jseg = σT +
∑
i∈x,y

(
α2
i

20
T 5 +

αiβi
4

T 4 +
αiγi + β2

i

3
T 3

+βiγiT
2 + γ2i T).

(13)

where i ∈ x, y denotes space dimensions considered in USV
trajectory generation. It can be found that Jseg is a higher-
order polynomial about time T . Then the optimal trajectory
can be constructed by calculating the optimal time T ∗ of
minimum cost via solving dJseg/dT = 0.

The TreeGrow() process is described in Algorithm
2, where Steer() quickly obtains the optimal trajectory
between two states by solving Eq. 11 in a closed form so that
the algorithm can obtain the feasible trajectory. The obtained
trajectory can be added into the sampling tree only when it
passes the feasibility test of FeasibilityCheck().

V. TRAJECTORY OPTIMIZATION AND TRACKING

In the trajectory generation framework, trajectory feasibil-
ity can not be guaranteed. To reduce the number of samples
and improve efficiency, we adjust the trajectory to meet the
relevant constraints through local optimization according to
the infeasible trajectory. Referring to [22], the closed form of
solution can be calculated by setting the objective function
to a quadratic form.

A. Optimization modelling

In order to optimize the trajectory, the constraints in-
clude the four following items, i.e., trajectory smoothness,
collision-free, dynamic, and original trajectory constraints.
We divide the original trajectory into multiple segments
based on time so that multiple free states are in the middle to
prevent poor performance of whole trajectory optimization.
Then, the objective function is defined as

F = λsfs + λcfc + λdfd + λofo, (14)

1276

Fig. 4. An illustration of trajectory optimization. The orange path is
sampled by A∗ algorithm from original trajectory point vin to vout, and
then the anchor points pa are sampled. Finally, the blue path is generated
by moving pa to the safety guidance points ρ ∈ Pt.

where fs, fc, fd and fo denote the above items, and λs, λc,
λd and λo are the weights respectively.

The trajectory smoothness term fs is the time integral of
the trajectory jerk, i.e.,

fs =

∫ T

0

‖U(t)‖2dt = c>Qsc, (15)

where c> = [c>1 , c
>
2 , . . . , c

>
n] is composed of coefficient

vector of n trajectory segments, and Qs is a diagonal
matrix consisting of time Ti of different orders in trajectory
polynomial. T = T1 + T2 + . . .+ Tn is the total duration of
trajectory and Tn is the duration of one divided piece.

Referring to [8], the collision-free term fc is described
as the integral of the distance between the safety guidance
point ρ and the collision trajectory segment. The process is
illustrated in Fig. 4. This makes the trajectory of the collision
part tend to the safety guidance points ρ to keep away from
obstacles.

fc =
∑
ρ∈Pt

∫ Tρe

Tρs

‖p(t)− pρ(t)‖2dt

=
∑
ρ∈Pt

(c− cρ)>Qc,ρ(c− cρ).
(16)

The collision part is obtained by FeasibilityCheck(),
and the topological path is updated using A∗ algorithm. pρ(t)
denotes the position of the safety guidance points ρ, and
(T ρe − T ρs) ⊆ [0, T] is the corresponding time period of
collision part influenced by ρ.

The dynamic constraint term fd limits the range of higher-
order derivatives of the trajectory and punishes the trajectory
part that exceeds the physical dynamics of USV. That is

fd =
∑
ι∈S

∫ T ιe

T ιs

‖v(t)− vmax‖2 + ‖a(t)− amax‖2dt

=
∑
ι∈S

(c− cι)>Qd,ι(c− cι),
(17)

where vmax and amax denote the maximal speed and
acceleration of USV respectively. S is the trajectory part

that exceeds the system physical limit. T ιs and T ιe indicate
the start and end time of the trajectory part S respectively.

The original trajectory constraint term fo is similar to the
collision-free term, except that the original trajectory position
information p∗(t) is used as the limit.

fo =

∫ T

0

‖p(t)− p∗(t)‖2dt = (c− c∗)>Qo(c− c∗). (18)

The function of term is to constrain the safe part of original
trajectory to maintain its original feasibility.

Referring to [22], trajectory optimization function 14 has
positive definite property, and the optimal solution can be
obtained through a closed form. When the trajectory still
does not satisfy the requirements, the unsatisfactory segmen-
tation will be extracted, and the weight of the corresponding
optimization term is modified with a more significant impact
so that the trajectory meets all constraints after multiple
iterations.

In our framework, the trajectory generated by the front
end based on dynamics is composed of several segments, so
its overall smoothness can not be guaranteed, which is not
optimal for tracking. Therefore, these trajectory segments
need to be optimized for trajectory smoothness. We use
the same optimization function as above, except that the
smoothness weight λs is enlarged and dynamic constraint
weight λd is reduced. Meanwhile, because there is no colli-
sion in the optimized trajectory, we directly set the original
trajectory as the safety route Pt to extract guidance point ρ
when constructing the collision-free term fc. After smooth
optimization, the trajectory is more feasible and stable for
USV while satisfying other constraints.

B. Motion tracking with NMPC

The safe and feasible trajectory generated by the planning
module needs effective trajectory tracking control to realize
the autonomous navigation of USV. To make USV have
stable tracking ability in complex water environments, we
set a high control frequency to 100Hz, and contain all the
states x into the control law.

The nonlinear model predictive control (NMPC) method
is selected as the controller. According to the general form
of MPC, a quadratic optimization problem is constructed
about the error between the given trajectory state and the
forward prediction state. The following nonlinear discrete
optimization problem is iteratively solved.

min
x0,...,xN ,

u0,...,uN−1

∆x>NQN∆xN +

N−1∑
i=0

∆x>i Q∆xi + u>i Rui

s.t. xi+1 = fRK4 (xi,ui,∆t)

x0 = xinit,umin ≤ ui ≤ umax
∆xi = xi − xi,ref ,

(19)
where x0 is the actual state of USV at each solution cycle
time, xi,ref represents a reference obtaining from trajectory
generation, the forward prediction time Tf is discretized into

1277

Fig. 5. Visualization of trajectory planning over a short period of time with velocity profile.

N time steps, and QN , Q, R are weighting matrices.The
weights were selected experimentally as

R = diag([5, 5]),

Q = diag([15, 15, 7, 5, 1, 1]),

QN = diag([30, 30, 15, 10, 2, 2]).

(20)

This optimization problem can be transformed into a
sequential quadratic programming (SQP) problem, and the
control process is implemented through Acados library [23].

VI. SIMULATION RESULTS

In this section, we perform simulation experiments using
the open source USV simulator Otter [24] to verify the
proposed method within the ROS environment.

A. Simulation environment

The Otter USV is a catamaran cloned from the real world,
and we have slightly adjusted some physical parameters
of the USV according to the scenario in the simulation
experiments. It has a size of 1.53m long, 1.08m wide, and
0.82m high, with a total mass of about 29kg, and each
propeller can provide a bidirectional thrust of the maximum
100N. Sensing equipment, including LIDAR, camera, and
GPS, have been equipped in the simulator. The Otter USV
sails in a rugged island environment with various floating
obstacles.

The experimental scenario is constructed within Gazebo,
and the scene size is about 300×300 square meters. The
environment includes random known and unknown obstacles.

Moreover, the scene contains a constant disturbance wind
field and wave that causes the USV to swing and drift.
All experiments are conducted on a laptop with an Intel i7-
1165G7 CPU and a Linux platform running ROS.

In order to identify the unknown parameters h in the
Otter USV, we use random input and sinusoidal input respec-
tively to generate two different kind of USV system motion
data for solving Eq. 8. Eventually, the unknown parameters
for the Otter USV are as h = [m1,m2, d1, d2, d3] =
[38.5, 14.5, 19.4, 20.5, 18.6].

B. Path planning analysis

As shown in Fig. 5, the Otter USV travels across a
complex island with various unknown obstacles. The path
planning module can generate an obstacle-avoidance trajec-
tory in real-time. The blue line shows the planning results
by dynamic RRT∗, which is random and not optimal. After
the optimization process proposed by our method, the USV
can obtain a smooth and kinetic affine trajectory to cross all
kinds of terrain in the best posture.

The ablation study for the proposed method is shown in
Table I, where the baseline denotes the dynamic RRT∗ algo-
rithm, and local optimization (+Local Opt.) means trajectory
local adjustment with differential flatness, and global opti-
mization (+Global Opt.) means the trajectory optimization
with dynamic constraints. Trajectory length, time, and cost
are associated with generated trajectory. Node utilization is
the ratio of planning algorithm utilization to planned nodes
and total sampling nodes, which is used to evaluate the

1278

TABLE I
ABLATION STUDY FOR THE PROPOSED METHOD.

Method
Traj.
Len.

Traj.
Time

Traj.
Cost

Node
Util.

Algo.
Time

Succ.
Rate

(m) (s) - (%) (ms) (%)
Baseline 71.4 20.5 24.3 29.7 58.1 86
+Local Opt. 71.8 20.8 24.2 40.6 47.8 96
+Global Opt. 69.6 21.6 22.1 30.8 60.2 84
Proposed 69.3 21.3 21.9 41.8 45.6 98

algorithm’s efficiency. Algorithm time and success rate are
used to measure the performance of the algorithm. The
algorithm is tested repeatedly 50 times, and one successful
planning should be completed within 100ms.

In the baseline model test results, the node sampling rate
is obviously low (29.7%), and the problem of calculation
timeout frequently occurs, resulting in a low success rate
(86%). At the same time, the algorithm consumes more
time (58.1ms). On the other hand, the length of trajectory
generated by the baseline model is long, and the trajectory
is not smooth. This also can be viewed from Fig. 5.

After adding the local optimization method, the node
utilization, planning time, and success rate have been signifi-
cantly improved (40.6%, 47.8ms, 96%), which indicates that
it has a significant effect on the efficiency and stability of the
planning algorithm. After the global optimization method is
added, the path length and cost are reduced because it makes
the path smoother, and the algorithm time consumption does
not increase too much.

As for the proposed method, we combine the baseline
model with local and global optimization, resulting in a
smoother trajectory and higher planning efficiency. The
trajectory length and cost are the lowest (69.3m, 21.9),
while the node utilization, algorithm time, and successful
rate achieve the best (41.8%, 45.6ms, 98%).

Taking a closer look at the state variables of the planned
trajectory as shown in Fig. 6, there are few shocks in the
surge and sway velocity curves, as well as the yaw and
its rate. As for the control inputs, the desired thrusts are
generally stable, which shows that the control performance
requirements for the USV are relatively low in this case.

C. Motion control analysis

As for the motion control performance, the results are
illustrated in Fig. 7. The proposed control method will track
two trajectory types, including the spiral type and splayed
shape trajectory. Meanwhile, we test the control performance
with and without disturbance. From the results, we can see
that the tracking control performance remains at a high level.
Overall, the accurate trajectory of USV is consistent with the
planned trajectory, and the tracking error is controlled within
0.4m in a 300×300 square meters simulation environment.
The tracking velocity is quite large, ranging up to about 4m/s,
which is quite a large velocity for a small USV.

The quantitative comparisons between the baseline model
(NMPC without DF) and the proposed method are sum-
marized in Table II. Although the USV trajectory tracking

Fig. 6. State variables with time for the planned trajectory.

TABLE II
ABLATION STUDY FOR DIFFERENTIAL FLATNESS (DF) IN MOTION

CONTROL.

Method
Mean
Error

Max
Error

Mean
Vel.

Max
Vel.

Ang. Vel.
Integral

(m) (m) (m/s) (m/s) (rad2/s)
w.o DF 0.257 0.768 2.93 4.31 2.01
Ours 0.121 0.483 3.32 4.37 0.95

algorithm can still track the trajectory in real-time without
differential flatness, the control effect is poor, the navigation
is not smooth, and the mean tracking error achieves 0.257m.
After adding differential flatness, the angular velocity inte-
gral has significantly decreased (from 1.97 to 0.82), which
indicates that differential flatness makes a better connection
between path planning and motion control components. It has
a better improvement in the robustness of motion control.

VII. CONCLUSION

In this paper, we propose a novel yet efficient trajectory
planning and motion control algorithm for USV. Traditional
methods use trajectory designed for UAV or AGV as the
guidance to generate an obstacle-avoidance path, which
ignores the inherent under-actuated characteristics of USV.
Based on this, we propose a trajectory planning algorithm
that concerns the hull dynamics during the process and
uses differential flatness to improve algorithm efficiency.
The generated trajectory is in good agreement with the
characteristics of the hull, so the control effect remains at a
high level. We perform extensive simulation experiments to
verify the effectiveness of the proposed method in planning
and controlling performance for USV. In the future, we will

1279

Fig. 7. Visualization of motion tracking results of a spiral type and splayed shape trajectory with and without disturbances.

carry out high-precision system identification on a real ship
and realize it in real objects.

REFERENCES

[1] Y. Qiao, J. Yin, W. Wang, F. Duarte, J. Yang, and C. Ratti, “Survey
of deep learning for autonomous surface vehicles in marine envi-
ronments,” IEEE Transactions on Intelligent Transportation Systems,
2023.

[2] Z. Chen, T. Huang, Z. Xue, Z. Zhu, J. Xu, and Y. Liu, “A novel
unmanned surface vehicle with 2d-3d fused perception and obsta-
cle avoidance module,” in 2021 IEEE International Conference on
Robotics and Biomimetics (ROBIO). IEEE, 2021, pp. 1804–1809.

[3] W. Wang, T. Shan, P. Leoni, D. Fernández-Gutiérrez, D. Meyers,
C. Ratti, and D. Rus, “Roboat ii: A novel autonomous surface vessel
for urban environments,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 1740–
1747.

[4] L. Wen, J. Yan, X. Yang, Y. Liu, and Y. Gu, “Collision-free trajec-
tory planning for autonomous surface vehicle,” in 2020 IEEE/ASME
international conference on advanced intelligent mechatronics (AIM).
IEEE, 2020, pp. 1098–1105.

[5] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

[6] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[7] Z. Du, Y. Wen, C. Xiao, L. Huang, C. Zhou, and F. Zhang, “Trajectory-
cell based method for the unmanned surface vehicle motion planning,”
Applied Ocean Research, vol. 86, pp. 207–221, 2019.

[8] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[9] B. Mu and P. Chirarattananon, “Trajectory generation for underac-
tuated multirotor vehicles with tilted propellers via a flatness-based
method,” in 2019 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM). IEEE, 2019, pp. 1365–1370.

[10] S. Han, L. Wang, Y. Wang, and H. He, “A dynamically hybrid path
planning for unmanned surface vehicles based on non-uniform theta*
and improved dynamic windows approach,” Ocean Engineering, vol.
257, p. 111655, 2022.

[11] K. Yu, X.-f. Liang, M.-z. Li, Z. Chen, Y.-l. Yao, X. Li, Z.-x. Zhao, and
Y. Teng, “Usv path planning method with velocity variation and global
optimisation based on ais service platform,” Ocean Engineering, vol.
236, p. 109560, 2021.

[12] X. Xu, P. Cai, Z. Ahmed, V. S. Yellapu, and W. Zhang, “Path
planning and dynamic collision avoidance algorithm under colregs via
deep reinforcement learning,” Neurocomputing, vol. 468, pp. 181–197,
2022.

[13] G. Zhang, J. Han, J. Li, and X. Zhang, “Apf-based intelligent naviga-
tion approach for usv in presence of mixed potential directions: Guid-
ance and control design,” Ocean Engineering, vol. 260, p. 111972,
2022.

[14] G. X. Wu, Y. Ding, T. Tahsin, and I. Atilla, “Adaptive neural network
and extended state observer-based non-singular terminal sliding mode-
tracking control for an underactuated usv with unknown uncertainties,”
Applied Ocean Research, vol. 135, p. 103560, 2023.

[15] B. Du, B. Lin, C. Zhang, B. Dong, and W. Zhang, “Safe deep
reinforcement learning-based adaptive control for usv interception
mission,” Ocean Engineering, vol. 246, p. 110477, 2022.

[16] E. I. Sarda, I. R. Bertaska, A. Qu, and K. D. von Ellenrieder,
“Development of a usv station-keeping controller,” in OCEANS 2015-
Genova. IEEE, 2015, pp. 1–10.

[17] S. Han, L. Wang, Y. Wang, and H. He, “An efficient motion planning
based on grid map: Predicted trajectory approach with global path
guiding,” Ocean Engineering, vol. 238, p. 109696, 2021.

[18] R. Morales, H. Sira-Ramı́rez, and J. Somolinos, “Linear active dis-
turbance rejection control of the hovercraft vessel model,” Ocean
Engineering, vol. 96, pp. 100–108, 2015.

[19] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[20] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: introductory theory and examples,” International
journal of control, vol. 61, no. 6, pp. 1327–1361, 1995.

[21] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[22] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
research. Springer, 2016, pp. 649–666.

[23] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “aca-
dos—a modular open-source framework for fast embedded optimal
control,” Mathematical Programming Computation, vol. 14, no. 1, pp.
147–183, 2022.

[24] J. H. Lenes, “Autonomous online path planning and path-following
control for complete coverage maneuvering of a usv,” Master’s thesis,
NTNU, 2019.

1280

