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Abstract— This paper proposed a new torque estimation
method based on an equivalent efficiency model and back
propagation (BP) neural network to obtain accurate torque.
Firstly, the joint transmission efficiency model is obtained based
on experiments to correct the torque observer (TOB). Then
the relationship between joint position, velocity, current, and
torque estimation is established by BP neural network, and the
torque estimation error is compensated further. Finally, several
comparative experiments are carried out. The results show
that the proposed method can obtain more accurate torque
compared with traditional TOB.

I. INTRODUCTION

With the rapid development of manufacturing and service
industries, people have higher human-robot interaction (HRI)
performance requirements. The robots not only should ensure
humans’ safety but also can cooperate with them to complete
complex work. Therefore, accurately measuring and con-
trolling the external force or torque from the environment
or humans have become the key to realizing HRI. But so
far, many technical problems still need to be overcome in
the research on collaborative robots. Due to the reduction
mechanism (harmonic reducer) in the integrated joint, on
the one hand, its flexibility is introduced into the joint
system, which increases the difficulty of modeling. On the
other hand, there is a difference in the harmonic reducer’s
forward and back transmission efficiency models. Both of
them will influence the performance of HRI. In addition,
torque sensors are often installed in the integrated joints
to realize related torque control algorithms. However, the
introduction of torque sensors not only increases the cost of
the integrated joint but also further reduces the stiffness of
the joint system, making the design of the integrated joint
controller more difficult.

To solve the difficulty mentioned above, many scholars
have been studying the torque observer (TOB) structure that
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does not rely on sensors in recent years. The traditional
method used the current and velocity signal to estimate the
torque value based on the dynamic model[1]. Combining
it with the disturbance observer (DOB), the system could
realize the sensorless force/torque control[2][3]. However,
this method had high requirements for the dynamic model,
especially the friction model, which was complex and nonlin-
ear. Based on the generalized momentum method, Wahrburg
estimated the environmental force and joint torque to detect
whether the robot collides[4]. But this method was also
highly dependent on the model. Peng obtained the model
of joint torque through an offline/online neural network[5].
Kommuri designed a higher-order sliding-mode-based ob-
server to estimate the external torque online against nonlinear
friction[6]. Some scholars applied Extended Kalman Filter
(EKF) to estimate the external joint torques[7][8]. These
methods are independent of the model, but there is still room
for further improvement in the estimation accuracy.

In this paper, the equivalent efficiency model is estab-
lished and corrected based on the traditional TOB, which
significantly reduces the estimation error of TOB. In addi-
tion, to improve the estimation accuracy further, the back
propagation (BP) neural network structure is designed using
the integrated joint’s state information.

The rest of this paper is organized as follows. The equiva-
lent efficiency model of the integrated joint is established and
analyzed in Section II. In Section III, BP neural network is
introduced to improve the torque estimation accuracy further.
Section IV performs several experiments and analyzes the
results. Finally, the conclusion is summarised in Section V.

II. EQUIVALENT EFFICIENCY MODEL OF THE
INTEGRATED JOINT

The internal mechanical structure of the integrated joint
can be simplified as a transmission diagram, as shown in
Fig.1. It contains motor-side, reduction gear, and load-side.
Among them, the reduction gear is usually a harmonic
reducer. τm, τ j, and τext

l represent the motor torque, the
joint torque of the flexible spline of the harmonic reducer,
and the torque applied to the joint by the environment or
humans, respectively. The motor-side inertia and damping
are represented by Jm and Dm. And the load-side inertia
and damping are defined as Jl and Dl . For reduction gear,
K, D, Gr, and η denote its stiffness, damping, gear ratio,
and efficiency. θm and θl are the positions of the motor-
side and load-side. In Fig.1, the forward drive means normal
joint control that operates according to a command signal. In
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contrast, the back drive means the joint control that operates
according to an external torque.
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Fig. 1. The transmission system of integrated joint

The integrated joint can be regarded as a dual mass-
damping-spring system based on its internal structure. Its
dynamic equations can be obtained:

τm−
τ j

Gr
ηG = Jmθ̈m +Dmθ̇m (1)

τ j− τ
ext
l = Jl θ̈l +Dl θ̇l (2)

τ j = K
(

θm

Gr
−θl

)
+D

(
θ̇m

Gr
− θ̇l

)
(3)

In (3), the joint torque is calculated according to the
positions and velocities of the motor-side and the load-side.
However, due to the nonlinear joint stiffness and the lag of
the velocities and positions, the torque error estimated by this
method is relatively large. Fig. 2 shows the block diagram
of TOB in the integrated joint.
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Fig. 2. Block diagram of TOB in integrated joint

In Fig.2, i and Kt denote motor input current and torque
constant. ωm and ωl represent the velocities of motor-side
and load-side, respectively. τ̂ j

′
is the estimation of the joint

torque by traditional TOB. fm is the friction torque, which
contains motor-side viscosity and nonlinear friction. And f̂m
denote the friction torque estimation of the motor-side. gt
is the bandwidth of TOB. Therefore, the joint torque τ j
is estimated using current i and motor-side velocity ωm as
follows:

τ̂ j
′
=

[
gt

s+gt

(
iKtn + Jmngtωm− f̂m

)
− Jmngtωm

]
Gr (4)

However, this estimation method neglects the reducer
stiffness, transmission efficiency, and other nonlinear factors.
Especially when the joint state or external load changes, the
traditional TOB has a large estimation error. On the other
hand, most friction models cannot accurately describe the
friction in the joint, especially in the low-velocity stage.
Besides, since the direction of the static friction force is
difficult to determine, the calculation of the friction model
often has a large error with the actual friction, which further
reduces the accuracy of TOB.

Due to the existence of the harmonic reducer, the inte-
grated joint inevitably has forward and back drive efficiency.
It is due to the friction generated during the transmis-
sion process that consumes part of the energy. In general,
transmission efficiency is related to the load, velocity, and
temperature, among which the load significantly influences
the efficiency. In addition, the unique transmission form of
the harmonic reducer and its flexibility lead to different
torque forms of the circular spline and the flexible spline
during forward and back drive. That makes an apparent
difference between the forward and back drive efficiency
models. Therefore, it is challenging to establish an efficiency
model based on the physical model of the integrated joint. In
this section, the model under different velocities and loads
is attained by fitting the experimental data.

Since friction is the main cause of transmission efficiency,
the damping in the original system can be neglected. Ac-
cording to its main influence on joint dynamics rather than
kinematics, it can be simplified as a correction coefficient η

of reaction force. So the block diagram of TOB based on an
equivalent efficiency model is shown in Fig. 3.
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Fig. 3. Block diagram of TOB based on equivalent efficiency in integrated
joint

The relationship of motor-side can be expressed as:

iKt −
ητ j

Gr
= Jmω̇m (5)

when the joints move with a constant velocity, (5) can be
simplified as:

η =
GriKt

τ j
(6)

Therefore, η can be calculated by measuring the motor’s
current and the load torque when the joint moves with a
constant velocity. According to the research of other scholars,
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load and velocity are the main factors affecting efficiency.
Since the purpose of this research is to estimate the joint
torque, the load of the joint is indirectly characterized by
the output torque of the motor. The velocity can be directly
obtained by the encoder signal. Therefore, the correction
coefficient η is subsequently fitted by the joint velocity, the
load torque, and the input motor current in this section.
Finally, combining with the traditional TOB method, the
estimation of joint torque τ̂ j

′′
can be written as:

τ̂ j
′′
=

[
gt

s+gt
(iKtn + Jmngtωm)− Jmngtωm

]
Gr/η̂ (7)

To better fit the influence of transmission efficiency on
joint dynamic performance. Experiments are designed for
two cases of forward and back drive efficiencies. When simu-
lating the forward drive, a velocity loop control is performed
on the tested joint, and a current loop control is performed
on the driving joint. In this case, the current direction of
the tested joint is the same as the velocity direction. So the
current drives the joint movement, and the load hinders the
joint movement. The desired velocities of the tested joints are
set to 0.2rad/s, 0.6rad/s, 1.0rad/s, 1.4rad/s, 1.8rad/s, 2.2rad/s,
2.6rad/s, and 3.0rad/s, respectively. Due to the limitation
of the nominal output torque, when the joint velocity is
less than ±1.8rad/s, the input current corresponding to the
driving joint at each velocity is 0A, 1A, 2A, 3A, 4A, and
5A. When the velocity exceeds ±1.8rad/s, the input current
of the driving joint at each velocity is 0A, 1A, 2A, 3A, and
4A, respectively. The motor-side velocity and input current
of the tested joint, the input current of the driving joint, and
the load torque are shown in Fig. 4.
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Fig. 4. Forward drive: (a) Input current of tested joint; (b) Input current
of driving joint; (c) Motor-side velocity of tested joint; (d) Joint torque.

When simulating the back drive, the current loop control is
performed on the tested joint, and the velocity loop control
is performed on the driving joint. In this case, the current
direction of the joint to be tested is opposite to the velocity
direction, the load drives the joint movement, and the current
hinders the joint movement. Similarly, the desired velocities
of the driving joint, and the current of the tested joint at each

velocity are set as the same as those in forward drive. The
motor-side velocity and input current of the tested joint, the
input current of the driving joint, and the load torque are
shown in Fig. 5.
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Fig. 5. Back drive: (a) Input current of tested joint; (b) Input current of
driving joint; (c) Motor-side velocity of tested joint; (d) Joint torque.

It can be found that the joint velocity and the input
current are stable in both the forward and back drive. But
there are large overshoots at high velocities when changing
directions. The joint torque has a slight vibration due to
the harmonic reducer torque ripple. Then the torque and the
current measured at the same velocity and load are averaged.
And the correction coefficient η in the corresponding state
can be obtained according to (6).

Then η can be fitted as a binary function of motor-side
velocity and input current. However, there is a difference
between the forward and back drive models. On the other
hand, the friction model parameters are also different when
the integrated joint is in positive and negative rotation.
Therefore, the results are divided into four cases to fit (i > 0,
ωm > 0; i < 0, ωm < 0; i < 0, ωm > 0; i > 0, ωm < 0). Here,
ωm > 0 represents positive rotation, and ωm < 0 represents
negative rotation. The same symbol of i and ωm represents
the forward drive, and the opposite symbol of i and ωm
represents the back drive. Due to the unknown physical
model of efficiency, the polynomial fitting based on the least
square method is adopted. Through comparative analysis, the
root mean square error (RMSE) can be controlled below 0.06
by a quadratic polynomial. Although higher-order models
can match the test data better, they are prone to overfitting.
The fitting function of η̂ is shown in (8):

η̂ = p00 + p10i+ p01ωm + p20i2 + p11iωm + p02ω
2
m (8)

The experimental data and model fitting results of four
cases are shown in Fig. 6 and Tab. I.

III. TORQUE ESTIMATION METHOD BASED ON
THE BP NEURAL NETWORK

However, even if as much experimental data is collected
as possible, it is still impossible to cover all operating
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Fig. 6. The measurement data of η and model fitted results: (a) i > 0,
ωm > 0; (b) i < 0, ωm < 0; (c) i < 0, ωm > 0; (d) i > 0, ωm < 0.

TABLE I
MODEL PARAMETERS AND RMSE OF η

Cases i > 0, i < 0, i < 0, i > 0,
ωm > 0 ωm < 0 ωm > 0 ωm < 0

P00 0.2530 0.2850 1.8830 1.8660
P10 0.1493 -0.1430 0.4870 -0.4769
P01 -0.0820 0.0839 0.2602 -0.2342
P20 -0.0117 -0.0114 0.0658 0.0645
P11 0.0060 0.0059 0.0435 0.04295
P02 0.0066 0.0060 -0.0168 -0.0101

RMSE 0.01963 0.01719 0.05599 0.05504

conditions. So the torque estimation method based on the
equivalent efficiency model still has some errors. In this
section, BP neural network method is introduced, which can
fit the characteristics of any nonlinear system. Therefore, it
can improve the accuracy of torque estimation further. Since
θm, ωm, θl , ωl , τ̂ j

′′
are related to joint output torque directly.

Besides, i can characterize the load information, which is
conducive to obtaining a more accurate torque model. So set
to the input of the neural network x =

[
i,θm,ωm,θl ,ωl , τ̂ j

′′
]
,

and the desired output τ j is the value of the torque sensor.
Since the number of input variables is small, and the multiple
hidden layers can be used to fit nonlinear functions, the
number of hidden layers is set to 3. The number of neurons
is 20, 40, and 10, respectively. The activation function is
selected as tanh:

σ (x) =
1− e−x

1+ e−x (9)
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The whole neural network structure is shown in Fig. 7,
and the TOB based on the equivalent efficiency model and
BP neural network is shown in Fig. 8. To obtain sufficient
dynamic information on the joint at different velocities and
accelerations, using periodic Fourier Series as excitation
trajectory of the joint. Integrated joint’s motor-side position,
velocity, and acceleration as shown in (10):

θm (t) =
N
∑

i=1

[
ai

iω
sin(iωt)− bi

iω
cos(iωt)

]
+

6
∑
j=1

c jt j−1

ωm (t) =
N
∑

i=1
[ai cos(iωt)+bi sin(iωt)]+

6
∑
j=2

c j ( j−1) t j−2

ω̇m (t) =
N
∑

i=1
[−iωai sin(iωt)+ iωbi cos(iωt)]

+
6
∑
j=3

c j ( j−1)( j−2) t j−3

(10)
The trajectory is the sum of N sine and cosine func-
tions, where ω is the fundamental frequency of the Fourier
Series. ai and bi are the amplitudes of sine and co-

sine function, respectively.
6
∑
j=1

c jt j−1,
6
∑
j=2

c j ( j−1) t j−2 and

6
∑
j=3

c j ( j−1)( j−2) t j−3 denote the joint position, velocity

and acceleration compensation, which can be calculated
according to the actual required initial and final states. By
designing and combining multiple trajectories, the trajecto-
ries are transitioned by a curve with a velocity of zero for
2s. This enables the neural network to better fit the dynamic
model of the integrated joint at start and stop. The position,
velocity, and acceleration are shown in Fig. 9.
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Fig. 9. Position, velocity, and acceleration of excitation trajectory.

It can be found that the Fourier Series trajectory position
and velocity obtained by genetic algorithm cover the full
range of the integrated joint. So it satisfies the requirements
of neural network excitation trajectory. Besides, the current
trajectory generated by the same method is shown in Fig.
10.
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Fig. 10. Input current of the driving joint corresponds to the excitation
trajectory.

When the input current of the driving motor varies, the
load also changes, which can be measured in real-time by
the torque sensor. The joint is controlled with a velocity loop,
and the results are shown in Fig. 11.
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Fig. 11. Excitation trajectory velocity control: (a) Position; (b) Velocity;
(c) Current; (d) Torque.

According to Fig. 11(b), the velocity control error is within
0.01rad/s, which is consistent with the planned excitation
trajectory. So it is trained as sample data of neural network.
The final training results are shown in Fig. 12. At the 1000th
iteration, the minimum mean square error is 0.003, which
satisfies the error requirements.
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Fig. 12. Joint torque fitting results by BP neural network.

IV. EXPERIMENTS

A double-joint towing experimental platform is designed
to apply a stable and controllable load to the integrated
joint to carry out experiments under different loads. As
shown in Fig. 13, the platform has two integrated joints
and they connect with each other through a torque sensor

(model: HBM T40B). The tested joint needs to measure
the correction coefficient η . The driving joint is used to
apply load to the tested joint. The value of the applied
load is measured by the torque sensor. The joint velocity
is obtained by the encoder at the motor-side of tested joint.
Several comparative experiments are carried out to verify
the effectiveness of the torque estimation method based on
equivalent efficiency model and BP neural network.

Joint Support

Driving Joint
Joint Sleeve

Torque SensorTested Joint

Tested Joint Driver Driving Joint Driver

Receiving Load-side 

Encoder Signal

Joint SupportJoint Sleeve

Fig. 13. Double-joint towing experimental platform.

A. Constant Velocity Control

The driving joint is used to apply a load to the tested joint.
The following two cases are experimentally verified.
• Forward Drive The tested joint performs a velocity

loop with commands of 0.5rad/s, 1.5rad/s, and 2.5rad/s,
respectively. And the driving joint runs a current loop.
When the velocity is ±0.5rad/s, the current commands
are 0.5A, 1.5A, and 2.5A; When the velocity becomes
±1.5rad/s, the current commands are 1.5A, 2.5A, and
3.5A; Finally, the device performs with the velocity of
±2.5rad/s, the current commands are 2.5A, 3.5A, and
4.5A, respectively.

• Back Drive The tested joint performs a current loop,
and the driving joint runs a velocity loop. Their current
and velocity commands are same as those in Forward
Drive.

The estimation results are shown in Fig. 14. In the back
drive, the torque error of the traditional TOB (red dashed
line) is small when the load is small. However, with the
load increases, the error increases obviously. This is because
that the torque loss is mainly friction at small loads. The
traditional TOB has a high estimation accuracy. When the
load becomes large, the joint torque is affected by efficiency
mainly, so the traditional TOB estimation error increases.
When the velocity is 2.5rad/s, and the load is 30Nm, the
torque error is the largest (27.6%). However, whether in
the forward or back drive, the torque error of TOB based
on the equivalent efficiency model method (yellow dotted
line) is reduced significantly compared with traditional TOB
estimation. This is mainly because the established correction
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Fig. 14. Comparison of different torque estimation methods under constant
velocity: (a) forward drive; (b) back drive.

model has no clear physical meaning and can not compensate
all errors. It can be seen that the TOB based on equivalent
efficiency model and BP neural network (purple dot-dash
line) can accurately estimate the joint torque at any velocity
and load.

B. Variable Velocity Control

The variable velocity control experiment is still carried
out through the experimental platform of Fig. 13. A new
trajectory is designed based on Fourier Series, as shown in
Fig. 15.
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Fig. 15. Trajectory of variable velocity control experiment.

The integrated joint performs variable velocity control
according to the generated trajectory. The comparison ex-
perimental results are shown in Fig. 16.
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Fig. 16. Comparison of different torque estimation methods under variable
velocity.

The traditional TOB has the largest error, and its mean
square error (MSE) is 10.07Nm. The MSE of the TOB based
on the equivalent efficiency model is 1.97Nm. However, the
TOB based on the equivalent efficiency model and BP neural
network has the smallest error, with a MSE of 0.22Nm.
It can be seen that the accuracy of the torque estimation
method proposed in this paper is much higher than that of
the traditional TOB. However, when the forward and back
driving switches, there are large errors in other estimation
methods except for neural network estimation. This is mainly
due to the difference of joint model between forward and
back drive.

V. CONCLUSIONS

In this paper, the torque estimation method based on
an equivalent efficiency model and BP neural network is
proposed. Compared to the traditional TOB, the proposed
method has higher estimation accuracy through theoretical
analysis and experimental verification. Especially the joint
has a large load or applies back driving. Therefore, the
torque information of the joint can be obtained without a
torque sensor. It not only saves the cost but also improves
the dynamic performance of the joint. In the future, we will
focus on the sensorless joint torque control experiment based
on this estimation method.
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