
Motion Profile Optimization in Industrial Robots
using Reinforcement Learning

Yunshi Wen, Honglu He, Agung Julius, John T. Wen

Abstract—Path tracking problems are challenging with the ab-
sence of dynamic models and information about robot controllers.
This paper presents a method of optimizing a motion profile
constructed using a set of pre-defined motion primitives and a
speed command to track a spatial trajectory with high accuracy,
speed, and uniform motion using industrial robots. We use a
bi-level optimization approach that optimizes execution accuracy
using reinforcement learning and execution speed using bi-section
search. We train and evaluate the reinforcement learning policy
in simulation for an ABB robot. Experiment results demonstrate
that the learned policy reduces the optimization cost to achieve
the desired specifications. Additionally, the trained policy can
generalize to trajectories not included in the training set.

Index Terms—Reinforcement Learning, Industrial Robot, Mo-
tion Primitive, Trajectory Optimization, Trajectory Tracking

I. INTRODUCTION

Many applications of industrial robots involve trajectory-
tracking tasks, including cold spraying [1], welding [2], sur-
face grinding [3], etc. In such tasks, a robot’s tool center
point (TCP) needs to track complex geometric trajectories with
high accuracy, high speed, and uniform motion. However, in
virtually all industrial robots, the users do not have access
to low-level control functions (e.g., at the joint-torques level).
Instead, the most common method to program industrial robots
is to convert the desired TCP trajectory into a motion profile.
A motion profile consists a set of waypoints connected by
segments of motion primitives (e.g., straight line motions). The
robot’s controller executes this sequence of motion segments to
produce the actual TCP trajectory, typically with some tracking
errors (see Sec. II for more details).

In many applications, the system performance is specified
by two factors: trajectory tracking accuracy (i.e., the tracking
errors should be small) and trajectory tracking speed (i.e.,
the trajectory traversal speed should be high and uniform).
Therefore, the conversion from the desired TCP trajectory to
the motion profile is typically done to optimize these two
(often conflicting) performance factors.

Existing works in trajectory optimization for industrial
robots focus on one of the factors in trajectory-tracking tasks,
including TCP position [4], speed [5], energy [6], force [7],
etc. Most of the methods use a feedback controller design
explicitly for only one of the factors. Current approaches
in minimum-time path tracking usually require the dynamic
model of the robot [8], [9] or assume the accurate executions
given the constraints [10]. However, in many applications of

The authors are with the Electrical, Computer, and Systems Engi-
neering Dept., Rensselaer Polytechnic Institute, Troy, NY, USA. Emails:
{weny2,heh6,juliua2,wenj} @rpi.edu.

industrial robots, the robot is a ”black-box” model where the
user gives commands and observes the execution trajectory
that may deviate from the expected trajectory. Current practice
in the industry of tuning the execution error is mostly manual
and time-consuming.

There are many ways the conversion from the desired TCP
trajectory to the motion profile can be optimized ([11]–[13]).
Typically, such a process would involve the following steps
[14]:

1) Redundancy Resolution: In some tasks, after the TCP
position and orientation are specified, there are still
redundant degrees of freedom (DoF). E.g., the task may
only specify that the TCP should be normal to a given
surface, leaving one DoF unspecified. Further, there may
be additional translational and/or rotational DoF for the
surface above. The Redundancy Resolution step
optimizes the free DoF according to an objective related
to some trajectory properties. The product of this step is
a fully resolved robot trajectory, either in the joint space
or in TCP position and orientation space.

2) Motion Profile Optimization: The robot trajectory
produced by the Redundancy Resolution step is
converted into the motion profile by optimizing the
sequence of motion primitives and their parameters (see
details in Sec. III).

Both steps involve non-convex and combinatorial optimiza-
tion, typically executed in time-consuming iterative algo-
rithms. If the trajectories are constantly changing, e.g. in
additive manufacturing, speeding up this conversion process
is crucial.

Redundancy
Resolution

Motion
Profile

Optimization

Robot
Execution

Task Fully resolved robot path Motion profile

We speed up this iteration

Fig. 1: Workflow of Motion Planning using Motion Primitives

In this paper, we assume the Redundancy Resolution
step is complete and focus on speeding up the Motion
Profile Optimization step. While both steps are chal-
lenging and necessary, speeding up the Motion Profile
Optimization step is more critical for the following
reason. Since the steps are executed in series, we can
first use (approximate) models or simulations (e.g., Robot-
Studio for ABB robots [15]) of the robot to execute

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 1309

the Redundancy Resolution step. However, the mod-
els/simulations are never exact. Therefore, in the Motion
Profile Optimization step we need to run iterations
on the actual robot (see Fig. 1). Our proposed algorithm is able
to reduce the number of iterations needed in this process, and
thereby reducing the time needed for the conversion process.

Our algorithm speeds up the waypoint adjustment process
in the Motion Profile Optimization step. Waypoint
adjustment is an optimization process where the robot itera-
tively executes the motion profile and adjusts its waypoints
to improve the tracking accuracy. To reduce the number of
iterations needed, we propose a method to train a policy for
adjusting waypoints in a motion profile using Reinforcement
Learning (RL) [16]. Note that the use of data-driven opti-
mization techniques (RL or others) is necessitated by the lack
of explicit model that can map the waypoints to the actual
robot trajectory with sufficient accuracy, as demanded by the
applications.

The main contributions of our approach in this paper are as
follows:

• We propose a motion profile optimization method to
optimize both execution errors and speed for tracking
spatial trajectories using industrial robots.

• We formulate the iterative waypoint adjustment process
as a reinforcement learning problem that does not require
explicit dynamic models and information about the robot
controller.

• We train a well-performing policy using existing RL
algorithms. On average, our policy achieves 17.7x speed-
up in time compared to the conventional gradient-descent-
based method.

• We demonstrate the generality of our proposed approach,
both in simulations and experiments, in executing trajec-
tories not included in the RL training dataset.

The remainder of this paper is organized as follows. In Sec.
II, we present notations and backgrounds of the trajectory-
tracking problem, motion primitives executions, and speci-
fications. In Sec. III, we present the optimization problem
formulation and methods to solve it. In Sec. IV, we discuss the
formulation and procedure of our proposed RL method. We
demonstrate the performance of our method from experiment
results in Sec. V. We conclude and discuss future works in
Sec. VI.

II. PRELIMINARIES

A. Notations
We use the symbol p ∈ R3 to denote the TCP position.

The symbol β ∈ R3 denotes the TCP orientation in axis angle
representation [17]. The symbol q ∈ R6 denotes the joint
angles in a 6-DoF industrial robot. We use the index i to
refer to the ith waypoint, index j to refer to the jth point in
a trajectory, and index k to refer to the kth step in an RL
episode. Other notations that we will use are summarized in
Table I.

Fig. 2 shows an example of a trajectory-tracking prob-
lem. The sequence of points {[pjtrack,β

j
track]}nj=1 in Fig. 2(a)

TABLE I: Table of Notations

Symbol Meaning
pj TCP position of the jth point
βj TCP orientation of the jth point
λj TCP speed of the jth point
qj Joint angles of the jth point

T = {[pj ,βj]}nj=1 A trajectory with n points
T̄ A normalized trajectory

Ttrack Trajectory to track
Texecute Actual robot execution trajectory
ψi Index of the ith waypoint in a trajectory
ai Action (adjustment) for the ith waypoint
ei Positional error vector at the ith waypoint

Ti
error Local error trajectory around the ith waypoint

Ti
target Local target trajectory around the ith waypoint

{[pi
wp,β

i
wp]}mi=1 A motion profile with m waypoints
η Coordinate for applying the actions

InvKin(·) Inverse Kinematic
J−1(·) Jacobian of the inverse kinematic function
(pimax)

k Maximum local position error around
the ith waypoint at the kth iteration

(βi
max)

k Maximum orientation position error around
the ith waypoint at the kth iteration

specifies Cartesian-space TCP position and orientation of the
trajectory to track. The set of waypoints {[piwp,β

i
wp]}mi=1

connected by motion primitives in Fig. 2(b) represents the
motion profile.

(a) (b)

Fig. 2: Example of a trajectory-tracking problem: (a): Trajec-
tory to track. (b) Fit the trajectory using MoveL primitives.

B. Motion Primitives and Their Execution

For most industrial robots, motion profiles can be pro-
grammed using several types of motion primitives, most
commonly:

• MoveL: Both the position p and orientation β are linear
functions of time.

• MoveC: The position p follows a circular arc while the
orientation β is a linear functions of time.

• MoveJ: The joint angles q are linear functions of time.
For simplicity, we only train on MoveL primitives and

evaluate on MoveL and MoveJ. A MoveL primitive is param-
eterized by its starting and target positions and orientation.
A MoveC primitive would need an additional parameter –
the circle’s radius. A MoveJ primitive is specified in joint
angle space instead of the Cartesian space on which the target
position p and orientation β are specified.

1310

At execution, the robot controller blends the motion prim-
itives into a smooth trajectory [10] through a process that
is usually vendor-specific and not accessible to the users.
Blending zone is a hyperparameter that indicates the size of the
blended region around each waypoint. Larger blending zones
increase execution speed but result in worse tracking accuracy.
Conversely, smaller blending zones improve tracking accuracy
but may require lower execution speed because of sharp turns.
This paper considers a fixed blending zone that spans a 10mm
region around each waypoint.

C. Specification

We impose the following specifications on the trajectory-
tracking task:

1) Positional tracking accuracy: the maximum positional
tracking error of TCP is less than 0.5 mm:

epmax = max
j

{
∥pjexecute − pjtrack∥2

}n
j=1
≤ 0.5mm. (1)

2) Orientation tracking accuracy: the maximum orienta-
tion tracking error of tool z-axis is less than 3◦:

eβmax = max
j

{
∥βjexecute − βjtrack∥2

}n
j=1
≤ 3◦. (2)

3) Speed uniformity: the standard deviation of the TCP
speed is less than 5% of the average TCP speed:

{λj}nj=1 =

{
∥pjexecute − pj−1

execute∥2
∆tj

}n

j=1

,

var({λj}nj=1) ≤ 0.05 ·mean({λj}nj=1).

(3)

where ∆tj is the time interval between the jth and (j + 1)th

points.

Algorithm 1 Motion Profile Optimization

Input: fully resolved trajectory Ttrack
v0 ← Initial speed command
vmin, vmax ← Bounds of bi-section search
c← 0
while maximum outer iterations not reached do

(↓ Inner: Minimize execution error using IWA)
(Motion profile)c, execution results ← IWA(vc, Ttrack)
(↓ Outer: Maximize average execution speed using bi-
section search)
if execution results satisfy all specifications then
vc+1 ← 1

2 (vmax + vc)
vmin ← vc

else
vc+1 ← 1

2 (vmin + vc)
vmax ← vc

end if
c← c+ 1

end while
return Highest vc and (Motion profile)c

III. MOTION PROFILE OPTIMIZATION

A. Formulation

Conceptually, we can write the Robot Execution block in
Fig. 1 as a function

Execute({piwp,β
i
wp}mi=1, v) 7→ Texecute,

where {[piwp,β
i
wp]}mi=1 are the m waypoints in the motion pro-

file and v is the commanded speed. The Motion Profile
Optimization step solves the optimization problem

max
{pi

wp,β
i
wp}m

i=1,v
mean({λj}nj=1)

s.t.max
j

{
∥pjexecute − pjtrack∥2

}n
j=1
≤ 0.5mm

max
j

{
∥βjexecute − βjtrack∥2

}n
j=1
≤ 3◦

var({λj}nj=1) ≤ 0.05 ·mean({λj}nj=1)

where Texecute = Execute({piwp,β
i
wp}mi=1, v)

{pjexecute,β
j
execute}nj=1 = Texecute

{pjtrack,β
j
track}

n
j=1 = Ttrack

{λj}nj=1 =

{
∥pjexecute − pj−1

execute∥2
∆tj

}n

j=1

.

(4)

The Motion Profile Optimization step is a bi-level
optimization process that maximizes the average TCP speed
under the accuracy and uniformity constraints.The proce-
dures are presented in Alg. 1. The inner problem optimizes
{piwp,β

i
wp}mi=1 by iteratively updating waypoint piwp and βiwp

for i = 1, . . . ,m{
(piwp)

k+1 = (piwp)
k + (∆piwp)

k

(βiwp)
k+1 = (βiwp)

k + (∆βiwp)
k

, (5)

which minimizes the tracking errors while ignoring the speed
uniformity constraint. We call this step Iterative Waypoint
Adjustment (IWA). The outer problem maximizes the speed
command v, using a bi-section search approach to satisfy all
three constraints.

B. Gradient-Based Method

The Multi-peak Gradient Descent (MPGD) method [14] is
a model-based non-learning approach that uses an approxi-
mated model to calculate the numerical gradient of waypoint
adjustment and optimize waypoints based on gradient descent.
To simplify computation, gradient calculations and waypoint
adjustments perform only on the few waypoints around each
peak tracking error. For the ith peak waypoint with position
piwp and orientation βiwp, the gradient of adjusting the waypoint
on the x axis with respect to the positional error is

∇eix =
d∥ei∥2
duix

≈
∥M(piwp + [δ, 0, 0]⊤)− pψi

track∥2 − ∥ei∥2
δ

,

(6)

where M is a cubic spline interpolation model to predict the
local execution trajectory given several waypoints around the

1311

ith waypoint, δ is a small perturbation, and ei = pψ
i

track−p
ψi

execute.
The same calculation applies to other axes and orientations.
Then,

[
(∆piwp)

k, (∆βiwp)
k
]

is calculated using gradient de-
scent and the waypoints are updated iteratively.

In experiments, the MPGD method may require many
iterations to meet the tracking error specifications. At each
iteration, the robot needs to execute the motion profile, where
running robots can be time-consuming and expensive. For
example, in simulation, it takes about 12 seconds to execute a
trajectory. On a real robot, since the execution result may not
be uniform due to physical uncertainty, the execution trajectory
used for gradient computation is the average of five runs for
a given motion profile.

IV. REINFORCEMENT LEARNING APPROACH

A. Overview of Data-Driven Approaches

Motivated by the inefficiency of the current approaches, we
use data-driven methods to reduce the number of iterations
required to achieve specified execution errors and, therefore,
reduce the cost of running this optimization process on robots.
The IWA process can be modeled as a sequential decision-
making problem to find a sequence of control inputs U ={{

(ui)k
}m
i=1

}kmax

k=1
, where (ui)k =

[
(∆piwp)

k, (∆βiwp)
k
]
. In

this paper, we define features, actions, and rewards for the
problem and propose a method to find U using reinforcement
learning.

An important finding from the MPGD method is that the
effect of adjusting a waypoint on the execution errors is mostly
local. Therefore, in our formulation, the iterative optimization
method is formulated locally:

• Features are defined locally, around each waypoint.
• The policy applies to all waypoints, but generates actions

for each waypoint separately. Each iteration adjusts all
waypoints at the same time.

• Reward is calculated based on local maximum execution
error.

Data-driven methods take local features as input and out-
put ai for the corresponding waypoint. Feature and reward
calculations of IWA are presented in Alg. 2.

B. Reinforcement Learning Formulation

Features, actions, rewards, and termination conditions are
formulated as the following:

• State: The trajectory to track and the current robot execu-
tion trajectory. The state is usually not directly accessible.
We decompose the state into local state features.

• State features: Features are defined locally around each
waypoint, i.e., between the previous and next waypoints.
For the first waypoint, the local interval is between the
first and second waypoint. For the last waypoint, the local
interval is between the second-last and last waypoint. The
number of points in the execution trajectory may vary
depending on the data streaming frequency and length of
the trajectory. Therefore, we first normalize the length of
the local trajectory to 50 points using linear interpolation.

The state features vector si for the ith waypoint has 313
elements from:
▶ P̄ i

error ∈ R50×3: Local position error trajectory normal-
ized by error value at the ith waypoint:

P̄ i
error =

{
pi,jerror/∥ei∥2

}50

j=1
. (7)

▶ P̄ i
target ∈ R50×3: Local target position trajectory

normalized using Principle Component Analysis (PCA).
PCA removes the effect of trajectory orientation and only
maintains shape information:

P̄ i
target = PCA

({
pi,jtarget

}50

j=1

)/
∥pi,50target − pi,1target∥2. (8)

▶ qi ∈ R1×6: Robot pose at the ith waypoint:

qi = InvKin(
[

piwp
βiwp

]
). (9)

▶ ei ∈ R1×3: Execution error at the ith waypoint:

ei = pψ
i

track − pψ
i

execute. (10)

▶ FJac ∈ R1: Effect of adjusting the waypoint on robot
joints. A larger value implies more joint movements:

F iJac ← ∥J−1(qi)[ei,0]⊤∥2. (11)

▶ F iposition ∈ R1: position of the ith waypoint in the local
interval:

Fposition ← (ψi − ψi−1)/(ψi+1 − ψi−1). (12)

▶ F iflag ∈ R2: Boolean variables that indicate the first and
the last waypoint:

F iflag =

[1, 0] if i = 1

[0, 1] if i = m

[0, 0] otherwise
. (13)

• Action: ai ∈ R1×3 represent positional adjustments for
a waypoint in Cartesian space. Note that the orientations
of waypoints are fixed after initialization. We address the
orientation error in the reward function. Instead of using
Cartesian coordinates, we define the relative coordinates
for applying actions:

– Axis 1: Towards the direction of the error vector at
the waypoint. Its unit vector is η1 = ei/∥ei∥2.

– Axis 2: Towards the previous waypoint. Its unit
vector is η2 = (pi−1

wp − piwp)/∥pi−1
wp − piwp∥2.

– Axis 3: Cross product of unit vectors of axis 1 and
axis 2. Its unit vector is η3 = η1 × η2.

The control inputs are

∆piwp = ai

 η1
η2
η3

 · ∥ei∥2, ∆βiwp = 0, (14)

where ηj ∈ R1×3 for j = 1, 2, 3.
• Reward: Rewards show improvement in maximum local

execution error compared to the previous iteration, nor-
malized by the maximum execution error at iteration 0.

1312

Let (pimax)
k and (βimax)

k denote the maximum positional
and orientation error in the local region of ith waypoint
at the kth iteration. The reward consists of the following
components:
▶ Position error (rip): Relative improvement in position
error:

rip ← clip
(
((pimax)

k − (pimax)
k−1)/(pimax)

0,−10, 10
)
.

(15)
▶ Orientation error (riβ): Relative improvement in orien-
tation error:

riβ ← clip
(
((βimax)

k − (βimax)
k−1)/(βimax)

0,−10, 10
)
.

(16)
▶ Failure (rifail): If the maximum local position error
exceeds 5mm:

rifail = −100 if (pimax)
k > 5mm else 0. (17)

▶ Success (risuccess): If the maximum local position error
is below 0.25mm:

risuccess = 10 if (pimax)
k < 0.25mm else 0. (18)

• Termination: In regular RL problems, failure and success
also represent the termination of an episode. In our
formulation, since a state is divided into multiple local
segments, the local termination flag d indicates a local
success or failure. However, instead of executing each
local segment separately, the robot executes the entire
trajectory. Therefore, the termination of an episode Φ is
in a global view, based on the following criteria:

– Fail: maxj ∥pjexecute−p
j
track∥2 > 5mm or robot joints

are close to singularities (from simulated robot model
or the robot controller feedback).

– Success: minj ∥pjexecute − pjtrack∥ < 0.25mm.
– Reaches iteration limit: k ≥ kmax.

Deep learning methods are increasingly applied to robot
control tasks [6] [18]. In this paper, we use a Deep Reinforce-
ment Learning approach and train a policy to find ai for each
waypoint.

C. Reinforcement Learning Algorithm

At each iteration, ai ∈ R3 is a continuous action. Therefore,
we use Twin-Delayer Deep Deterministic Policy Gradient
(TD3) [19], an RL algorithm that has state-of-the-art perfor-
mance on the continuous-action-space benchmarks.

Alg. 3 shows the procedure for training the RL policy, where
Qθ is the critic network with parameter θ, πϕ is the actor
network with parameter ϕ, ρ denotes the update rate of target
networks, and γ denotes the decay factor in Q learning. The
policy πϕ(S) : si 7→ ai represents RL action selection. We add
Gaussian exploration noise to actions ϵ ∼ N as the exploration
strategy during training. Note that this noise is removed during
evaluation.

Algorithm 2 Iterative Waypoint Adjustment (IWA)

Input: speed command v, Ttrack
{si}mi=1 ← INITIALIZATION(Ttrack)
while k < kmax and not Φ do
{ai}mi=1 ← Policy
{sin, ri, di}mi=1,Φ← IWA-ITERATION({ai}mi=1)
(epmax)k, (e

β
max)k, {(vj)k}nj=1 ← Spec(Texecute,Ttrack)

{si}mi=1 ← {sin}mi=1

end while
return

{
[(piwp)

k, (βiwp)
k]
}m
i=1

with the lowest positional
error and the corresponding (epmax)k, (e

β
max)k, {(λj)k}nj=1.

INITIALIZATION (input: Ttrack)
k = 0
{[(piwp)

k, (βiwp)
k]}mi=1 ← Sampled from Ttrack

Set primitive type to MoveL
{si}mi=1 ← GET-FEATURE
for i = 1, . . . ,m do
{pi,jerror,β

i,j
error}50j=1 ← Ti

error

(pimax)
0 ← maxj(∥pi,jerror∥2)

(βimax)
0 ← maxj(∥βi,jerror∥2)

end for
return {si}mi=1

ITERATION (input: A = [a1, . . . ,am])
(piwp)

k+1 ← Apply ai to (piwp)
k for i = 1, . . . ,m

k ← k + 1
{si}mi=1 ← GET-FEATURE
{ri}mi=1, {di}mi=1,Φ← CALCULATE-REWARD
return {si}mi=1, {ri}mi=1, {di}mi=1,Φ

GET-FEATURE
Texecute ← Execute (

{
[(piwp)

k, (βiwp)
0]
}m
i=1

, v)
Match index of Texecute and Ttrack
{[pjexecute,β

j
execute]}mj=1 ← Texecute

ψi ← argminj∥p
j
execute − (piwp)

k∥2 for i = 1, . . . , 100
ψ0, ψ101 ← 0, EOT
for i = 1, . . . ,m do
Ti

target ← Ttrack[ψ
i−1 : ψi+1]

Ti
error ← Ti

target −Texecute[ψ
i−1 : ψi+1]

{pi,jerror,β
i,j
error}50j=1 ← Ti

error

{pi,jtarget,β
i,j
target}50j=1 ← Ti

target
P̄ i

target, P̄
i
error,q

i, ei, F iJac, F
i
position, F

i
flag ← Eq. 7 to 13

si ← (P̄ i
target, P̄

i
error,q

i, ei, FJac, Fposition, Fflag)
end for
return {si}mi=1

CALCULATE-REWARD
for i = 1, . . . ,m do
{pi,jerror,β

i,j
error}50j=1 ← Ti

error

(pimax)
k ← maxj(∥pi,jerror∥2)

(βimax)
k ← maxj(∥βi,jerror∥2)

rip, r
i
ω, r

i
fail, r

i
success ← Eq. 15 to Eq. 18

ri = −rip − 0.5riω + rifail + 0.8k · risuccess
di = (pimax)

k > 5 or (pimax)
k < 0.25 or k ≥ 10

end for
Φ← Termination conditions
return {ri}mi=1, {di}mi=1,Φ

1313

Algorithm 3 RL Training

Randomly initialize actor and critic networks πϕ, Qθ1 , Qθ2
Copy parameters and create target networks: πϕ′ , Qθ′1 , Qθ′2
Initialize empty replayer buffer D
Ttrack ← Randomly select a trajectory from the dataset
{si}mi=1 ← IWA-INITIALIZATION(Ttrack)
t← 1

while maximum training step not reached do
{ai}mi=1 ← clip(πϕ({si}mi=1) + ϵ,−2, 2), ϵ ∼ N
{sin, ri, di}mi=1,Φ← IWA-ITERATION({ai}mi=1)
Save {si,ai, ri, di, sin}mi=1 to D
Sample mini-batch of N tuples (s,a, r, d, sn) from D
an ← clip

(
πϕ′(sn) + clip(ϵ,−0.5, 0.5),−2, 2

)
, ϵ ∼ N

q′1, q
′
2 ← Qθ′1(sn,an), Qθ′2(sn,an)

qtarget ← r + (1− d)γmin(q′1, q
′
2)

q1, q2 ← Qθ1(s,a), Qθ2(s,a)
Update critics by one step of gradient descent:
∇θi 1

N

∑
(s,a,r,d,sn)∈B(qi − qtarget)

2 for i = 1, 2
(Update sample weights of D if D is PER)

if t mod policy_update_frequency = 0 then
Update actor by one step of gradient descent:
−∇ϕ 1

|B|
∑
s∈B Qθ1(s, πϕ(s))

Soft update target networks:
ϕ′ ← ρϕ′ + (1− ρ)ϕ
θ′i ← ρθ′i + (1− ρ)θi for i = 1, 2

end if
{si}mi=1 ← {sin}mi=1

if Φ then
Ttrack ← randomly select a trajectory from the dataset
{si}mi=1 ← IWA-INITIALIZATOIN(Ttrack)

end if
t← t+ 1

end while

D. Addressing Outliers and Data Imbalance Issue

In experiments, we find outliers in the training data causing
failures during training. For transition tuples in D, most of the
feature vectors si are tightly distributed with some outliers. In
the actor-critic method, estimating the Q values of each data
point is a regression task. The performance of policy largely
depends on the accurate estimation of Q values.

Most machine learning and deep RL models use Rectified
Linear Units (ReLU) neural networks since they are efficient
in gradient computation and have been demonstrated to be ef-
fective on most problems. However, ReLU activation function
is sensitive to outliers. Therefore, in our implementation, we
use the Hyperbolic Tangent (Tanh) activation function which
has zero gradient at large input values, which results in stable
training.

Since Tanh activation functions saturates at large input
values, the training result may be biased towards the main
distribution. Our experiment results show that the learned

policy can reduce error for most of the waypoints but fail
for several waypoints with high local curvature. The training
should use the outlying data points more frequently to balance
the training data. We use the Prioritized Experience Replay
(PER) [20] method to relax the issue of imbalanced data and
overfitting.

V. EXPERIMENT

A. Test Trajectories

In this paper, we use two types of trajectories. Trajectory
type 1 is a multi-frequency sine trajectory on a parabolic
surface, representing a high curvature spatial trajectory (Fig.
3). Trajectory type 2 is the leading edge of a fan blade, which
is used for cold spraying applications in the industry (Fig. 4),
extracted from a CAD model.

(a) (b)

Fig. 3: Example of trajectory type 1 at pose 1 for: (a): baseline
(100 MoveL). (b) optimized motion profile using learned RL
policy.

(a) (b)

Fig. 4: Example of trajectory type 2 at pose 1 for (a): baseline
(100 MoveL) (b) optimized motion profile using learned RL
policy.

B. Setup and Baseline

In experiments, we use RobotStudio [15], an ABB robot
dynamics simulator, to run an ABB 6640 robot [21] for
training. The performance of the trained policy is evaluated
on both the simulated robot and the real robot.

The training dataset contains 300 randomly generated type
1 trajectories in three poses. The evaluation dataset contains
seven manually selected trajectories with different curvatures
and poses, where higher curvature implies higher difficulty.

1314

TABLE II: Iterative Waypoint Adjustment - RL Evaluation

Speed Cmd. Baseline MPGD(Sim.) RL(Sim.) MPGD(Real) RL (Real)
Traj. Pose (Sim./Real) Err.(Sim./Real) Err. Itr. topt Err. Itr. topt Err. Itr. Err. Itr.

Type 1 Hard 1 250/250 1.55/1.92 1.07 N/A N/A 1.14 N/A N/A 1.14 N/A 1.52 N/A
Type 1 Easy 1 250/250 0.80/1.02 0.20 3 95.45 0.23 1 9.61 0.20 7 0.23 1

Type 1 Medium 1 250/250 1.79/2.06 0.43 5 333.38 0.45 2 22.73 0.47 5 0.58 N/A
Type 1 (pose 1) 1 250/250 1.63/2.07 0.20 3 153.71 0.13 1 10.74 0.21 7 0.14 2
Type 1 (pose 2) 2 400/300 4.60/4.28 0.66 N/A N/A 0.46 7 63.46 0.88 N/A 1.1 N/A
Type 1 (pose 3) 3 400/400 2.03/3.66 0.31 8 383.67 0.23 2 17.42 0.70 N/A 0.37 3
Type 2 (pose 1) 1 1100/750 1.74/1.31 0.21 14 642.66 0.22 2 17.68 0.26 6 0.24 1
Type 2 (pose 4) 4 1100/700 1.71/1.24 0.51 N/A N/A 0.22 2 17.30 0.36 3 0.23 2
Type 2 (MoveJ) 1 1100/700 1.59/1.22 0.22 11 156.00 0.23 2 17.57 0.40 6 0.21 1

Trajectory type 1 at different poses has the standard curvature
which is slightly lower than the medium curvature. Poses and
their corresponding speed command are obtained from the
redundancy resolution step in [14]. Note that trajectory type
2 is not included in the training dataset and we use them
to demonstrate the learned policy can generalize to different
curves, poses, and type of primitives.

All the trajectories are executed using the blending zone
command z10. The initial motion profile contains m =
100 waypoints sampled uniformly from Ttrack connected by
MoveL primitives, which is used as the baseline.

C. Performance

We train the RL policy for 5,000 iterations. The number of
training episodes (number of trajectories) may vary depending
on exploration.

For IWA, we compare the performance between the initial
motion profile (baseline), MPGD, and the RL policy (RL)
using three metrics:

• Err. (mm): Best maximum positional execution error ob-
tained before reaching the maximum number of iterations.

• Itr.: Number of iterations it takes to achieve the 0.5mm
specified execution error.

• topt(s): Total time to complete IWA optimization.
Note that kmax = 50 for MPGD and kmax = 10 for RL.

As evaluated in RobotStudio (Table II), the IWA using
an RL policy outperforms MPGD, achieving 0.5 mm error
specifications on more trajectories. The RL policy demon-
strates a 4.2x improvement in Itr. and a 17.7x speedup in
topt. It also reduces iterations to 1 or 2 for most trajectories.
Type 2 trajectories confirm the policy’s generalizability to
various curve shapes, poses, and primitive types not present
in the training dataset. Orientation errors are omitted as they
consistently fall within the specified range.

On average, the MPGD method takes 60.86 seconds to
select the actions at each iteration, and the RL policy takes
0.004 seconds. The total training time is 26.25 hours, with only
0.42 hours allocated for neural network training, suggesting
that RobotStudio’s efficiency can enhance training.

When running the real robot, the execution results may not
be exactly repeatable since reproducibility is poor in industrial
robots. In each iteration, a motion profile is executed five
times, and Texecute is the average of five runs. Additionally,

several trajectories need to be executed with lower speed
commands to avoid blending errors reported by the robot
controller. Fig. 5 shows the experiment setup on a real ABB
6640 robot. The green laser paths on the parts present the TCP
trajectories.

With the trained RL policy, we run Alg. 1 for 10 itera-
tions, using bi-section search to optimize the speed command.
Table III summarizes the results of the complete Motion
Profile Optimization process, obtained using Robot-
Studio. (*) indicates a violation of specifications. Our pro-
posed method achieves all the specifications on all evaluation
trajectories. Trajectories that satisfy both error and speed
specification with only IWA result in higher average TCP
speed. Other trajectories achieve uniform but lower speeds.
Note that trajectory type 2 at pose 4 results in higher average
speed. The optimized speed command is v = 1089 which
reduces the effect of acceleration/deceleration and results in a
higher average speed.

TABLE III: Speed Optimization with RL Policy

IWA Only IWA + Bi-section Search
Traj. Error µ(λ) σ(λ) Error µ(λ) σ(λ)

mm mm/s % mm mm/s %
Ty.1 Hard 1.14* 204.28 28.1* 0.49 91.13 3.0
Ty.1 Easy 0.23 251.96 0.3 0.31 408.78 4.8
Ty.1 Med. 0.45 224.74 20.0* 0.48 133.25 4.5
Ty.1 Po.1 0.48 248.91 3.9 0.11 258.89 4.9
Ty.1 Po.2 0.46 370.49 16.3* 0.48 223.37 0.9
Ty.1 Po.3 0.49 398.17 2.5 0.44 410.02 3.4
Ty.2 Po.1 0.22 1078.27 7.3* 0.19 991.25 4.8
Ty.2 Po.4 0.22 1080.86 7.8* 0.47 1085.25 3.4

Ty.2 MoveJ 0.23 1078.05 7.2* 0.49 998.18 4.9

D. Ablation Study of Iterative Waypoint Adjustment

In the ablation study, we remove each component in the
proposed RL method to study their impact on performance.
We include the following cases:

1) RL−PER: remove Prioritized Experience Replay.
2) RL−Ptarget: remove local target position trajectory.
3) RL−q− FJac: remove features related to robot joints.
4) RL−e: remove information about error vector.
All cases are trained and evaluated using RobotStudio.

Based on results in Table IV, removing one of these com-
ponents reduces the generalizability of policies. Since deep

1315

TABLE IV: IWA Ablation Study

RL(Baseline) RL−PER RL−Ptarget RL−q-FJac RL−e
Traj. Err. Itr. Err. Itr. Err. It.r Err. Itr. Err. Itr.

Ty.1 Hard 1.14 N/A 1.09 N/A 1.18 N/A 1.30 N/A 1.33 N/A
Ty.1 Easy 0.23 1 0.17 1 0.23 1 0.25 1 0.24 1
Ty.1 Med. 0.45 2 0.43 2 0.45 2 0.42 2 0.47 3
Ty.1 Po.1 0.13 1 0.23 1 0.21 2 0.24 2 0.20 2
Ty.1 Po.2 0.46 7 0.96 N/A 1.39 N/A 2.00 N/A 1.56 N/A
Ty.1 Po.3 0.23 2 0.31 4 0.24 7 0.22 4 0.20 3
Ty.2 Po.1 0.24 2 0.24 2 0.18 2 0.17 2 0.23 3
Ty.2 Po.4 0.22 2 0.44 6 0.47 5 0.53 N/A 0.54 N/A

Ty.2 MoveJ 0.23 2 0.18 2 0.20 1 0.15 2 0.19 2

(a) (b)

Fig. 5: Experiment setup of an ABB 6640
robot tracking curve (a) Type 1 (b) Type 2.

RL algorithms usually do not have convergence and repro-
ducibility guarantee, the result can be impacted by training
variation, which includes neural network initialization, explo-
ration, learning rate, etc.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a motion profile optimization
method for enhancing accuracy and speed in trajectory-
tracking tasks. We formulate the IWA process as a sequential
decision-making problem and propose an RL-based policy
training method. Our approach achieves the tracking specifica-
tions on a real industrial robot, outperforming existing methods
in iterations needed to meet specifications and computation
time per iteration, thereby saving time and robot operation
costs.

In our experiments, we encounter imbalanced data under the
current formulation. Although heuristic feature normalization
and PER alleviate this issue, performance could be enhanced
with appropriate normalization techniques. Additionally, while
we only adjust waypoint positions, modifying waypoint ori-
entation may further improve performance by offering more
degrees of freedom, despite increased training difficulty.

ACKNOWLEDGMENT

The authors would like to thank Santiago Paternain, Eric
Lu, Jonathan Fried, Pinghai Yang, and Jeff Schoonover for
helpful discussions in our research. Research was sponsored
by the ARM(Advanced Robotics for Manufacturing) Institute,
through a grant from the Office of the Secretary of Defense and
was accomplished under Agreement Number W911NF-17-3-
0004. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Office of the Secretary of Defense or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation herein.

REFERENCES

[1] I. M. Nault, G. D. Ferguson, and A. T. Nardi, “Multi-axis tool path
optimization and deposition modeling for cold spray additive manufac-
turing,” Additive Manufacturing, vol. 38, p. 101779, 2021.

[2] X. Li, X. Li, S. S. Ge, M. O. Khyam, and C. Luo, “Automatic welding
seam tracking and identification,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 9, pp. 7261–7271, 2017.

[3] K. Ma, X. Wang, and D. Shen, “Design and experiment of robotic
belt grinding system with constant grinding force,” in 2018 25th Inter-
national Conference on Mechatronics and Machine Vision in Practice
(M2VIP), 2018, pp. 1–6.

[4] K. Ma, L. Han, X. Sun, C. Liang, S. Zhang, Y. Shi, and X. Wang,
“A path planning method of robotic belt grinding for workpieces with
complex surfaces,” IEEE/ASME Transactions on Mechatronics, vol. 25,
no. 2, pp. 728–738, 2020.

[5] Y. Xie, X. Tang, W. Meng, B. Ye, B. Song, J. Tao, and S. Q. Xie,
“Iterative data-driven fractional model reference control of industrial
robot for repetitive precise speed tracking,” IEEE/ASME Transactions
on Mechatronics, vol. 24, no. 3, pp. 1041–1053, 2019.

[6] S. Yin, W. Ji, and L. Wang, “A machine learning based energy efficient
trajectory planning approach for industrial robots,” Procedia CIRP,
vol. 81, pp. 429–434, 2019, 52nd CIRP Conference on Manufacturing
Systems (CMS), Ljubljana, Slovenia, June 12-14, 2019.

[7] C. Chang, K. Haninger, Y. Shi, C. Yuan, Z. Chen, and J. Zhang,
“Impedance adaptation by reinforcement learning with contact dynamic
movement primitives,” in 2022 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), 2022, pp. 1185–1191.

[8] Q. Zhang, S.-R. Li, and X.-S. Gao, “Practical smooth minimum time
trajectory planning for path following robotic manipulators,” in 2013
American Control Conference, 2013, pp. 2778–2783.

[9] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed
path,” International Journal of Control, vol. 87, no. 6, pp. 1297–1311,
2014.

[10] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path
following with bounded acceleration and velocity.” in Robotics: Science
and Systems, vol. 8, 2013, pp. 209–216 – 216.

[11] RoboDK Inc. , Simulate Robot Applications: Program any Industrial
Robot with One Simulation Environment. [Online]. Available: https:
//www.robodk.com

[12] Hypertherm, Inc., RobotMaster:CAD/CAM for robots (Off-Line
Programming). [Online]. Available: https://www.robotmaster.com,

[13] OCTOPUZ, RobotMaster:CAD/CAM for robots (Off-Line Program-
ming). [Online]. Available: https://www.octopuz.com/,

[14] H. He, C.-l. Lu, Y. Wen, G. Saunders, P. Yang, J. Schoonover, J. Wason,
A. Julius, and J. T. Wen, “High-speed high-accuracy spatial curve
tracking using motion primitives in industrial robots,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), 2023,
pp. 12 289–12 295.

[15] ABB Robotics, Operating Manual RobotStudio.
[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. The MIT Press, 2018.
[17] J. Craig, Introduction to Robotics: Mechanics and Control, ser. Addison-

Wesley series in electrical and computer engineering: control engineer-
ing. Pearson/Prentice Hall, 2005.

[18] H.-T. Nguyen and C. C. Cheah, “Analytic deep neural network-based
robot control,” IEEE/ASME Transactions on Mechatronics, vol. 27,
no. 4, pp. 2176–2184, 2022.

[19] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning, 2018, pp. 1582–1591.

[20] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in International Conference on Learning Representation, 2016.

[21] ABB Robotics, Product specification IRB 6640.

1316

