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Abstract— We present the Interactive Task Encoding System
(ITES) for teaching robots to perform manipulative tasks.
ITES is designed as an input system for the Learning-from-
Observation (LfO) framework, which enables household robots
to be programmed using few-shot human demonstrations with-
out the need for coding. In contrast to previous LfO systems
that rely solely on visual demonstrations, ITES leverages both
verbal instructions and interaction to enhance recognition
robustness, thus enabling multimodal LfO. ITES identifies
tasks from verbal instructions and extracts parameters from
visual demonstrations. Meanwhile, the recognition result was
reviewed by the user for interactive correction. Evaluations
conducted on a real robot demonstrate the successful teaching
of multiple operations for several scenarios, suggesting the use-
fulness of ITES for multimodal LfO. The source code is avail-
able at https://github.com/microsoft/symbolic-robot-teaching-
interface.

I. INTRODUCTION

Household robots with manipulation capabilities are in-
creasingly being considered as an alternative labor force
in various settings including home environments [1]. While
typical robotic systems assume that a robot performs specific
operations in a fixed environment, household systems need
to provide the ability to adjust operations to fit the user’s
needs and environment. Learning-from-Observation (LfO)
is a framework that aims to teach manipulative operations
through human demonstrations without coding, making it a
promising solution for programming household robots [2].

In LfO, a human demonstration is encoded into an inter-
mediate representation of object manipulation, so-called a
task model (Fig. 1). The task model consists of a sequence
of primitive robot actions, so-called tasks, and parameters
to achieve the tasks, so-called skill parameters. Because the
task model is an abstract representation of object operations,
the encoded task model is theoretically applicable to multiple
environments and arbitrary hardware.

Although studies have shown successful implementation
of LfO systems in various settings, they have been primarily
based on visual demonstration. For instance, vision-based
LfO systems have been developed for part assembly [3]–[5],
knot tying [6], and dancing [7]–[9]. On the other hand, stud-
ies have shown that human uses verbal instructions to make
teaching more interactive and efficient [10]–[12]. Inspired by
the nature of language, we have developed an LfO system
that utilizes both visual and verbal information, namely,
multimodal LfO [13], [14]. However, existing multimodal
LfO systems have focused on robust visual recognition and
information enrichment, and applications that take advantage
of interactivity have not yet been proposed.

This paper aims to present a practical pipeline of the
task-model encoder that employs interaction (Fig. 1). We

Fig. 1. Overview of the robot teaching framework, so-called Learning-from-
Observation (LfO). The red box indicated the Interactive Task Encoding
System (ITES) for LfO. ITES encodes multimodal human demonstrations
into a sequence of primitive robot actions, referred to as task models.

refer to the encoder as the Interactive Task Encoding System
(ITES). To enable users to teach at the task granularity level,
we adopt a simple method of “stop-and-go demonstration.”
In the stop-and-go demonstration, a user pauses the hand
motions when tasks switch. At every pause, the demonstrator
gives a verbal instruction for the next task before resuming
the hand movements. Given the stop-and-go demonstration,
ITES recognizes tasks and skill parameters and outputs a
task model, with improved stability achieved through GUI-
based interactive correction. The contributions of this paper
include proposing a practical pipeline for multimodal LfO
with interaction capability and demonstrating the system’s
effectiveness on a real robot with a dexterous hand.

II. RELATED WORKS

A. Role of language in recognition

Natural language has been shown to be useful in guiding
vision systems. For example, we have previously shown
that the use of verbal input can help a robot-vision system
determine the timings and the location of object grasping and
thus make the recognition robust [13]. In addition, verbal in-
structions include semantic constraints in manipulations that
are not explicitly taught through visual demonstration [15].

Language can be applied not only to vision-system guid-
ance but also to interactive education. Recent research has
proposed interactive systems that utilize human language for
remembering users’ previous inputs [16], operations in new
environments [17], and clarifying uncertain instructions [18].
However, to our knowledge, no multimodal LfO system has
been proposed that actively utilizes user interaction. This
study proposes a system that implements user interaction to
effectively utilize verbal instructions for task recognition.

B. Robot task planning from language

Starting with the work of the SHRDLU [19], the problem
of task planning based on language instructions has been
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Fig. 2. Manipulative operations with different granularity.

studied for decades. Before the development of Natural
language processing (NLP) technology, the dominant method
of understanding sentences was by parsing verbs and syntax
(e.g., [20], [21]). In recent years, the use of NLP technology
has become more common, and systems have been proposed
to analyze abstract instructions [22], [23] and complex in-
structions, including conditional branching [24].

Multimodal robot teaching has been studied in both end-
to-end approaches based on large models [22], [25]–[29] and
symbolic robot teaching approaches including multimodal
LfO [14], [30]–[32]. However, the previous LfO systems
used a simple knowledge base that maps tasks to verbs in
a single sentence, which limits the flexibility of input texts
and the length of task sequences to be taught at once. In
this paper, we aim to teach tasks of arbitrary length through
more flexible sentences by utilizing a step-by-step teaching
method and a task recognition model based on NLP.

III. TEACHING STRATEGY FOR MULTIMODAL LFO

In the context of robot teaching, the granularity gap
between human demonstrations and robot execution can be
problematic. This section proposes a teaching method to
bridge this gap.

A. Unit of human demonstration and robot execution

In this paper, we define that a unit of human demon-
stration starts with grasping an object followed by several
manipulative tasks, and ends with releasing the object. We
call this unit a grasp-manipulation-release (GMR) operation.
We believe that various manipulative household operations
can be achieved as a result of multiple GMR operations. For
example, cleaning the table after a meal can be broken down
into the GMR of a plate for clearing dishes and the GMR
of a sponge for wiping the table. Note that we focused on
single-armed operations and assumed that only one object is
being manipulated in a GMR operation.

On the other hand, the unit of robot execution, task, can be
finer than GMR operations. In a typical LfO, a task is defined
as a transition of a target object’s state. For example, we have
proposed a task set based on the types of motion constraints
imposed on the object [15]. Consequently, a GMR operation
is divided when the motion constraints to the object change.
As an example, a GMR operation of “picking up a cup and
carrying it on the same table” is divided into the tasks of
picking up the object (PTG11) bringing it (PTG12), and
placing it (PTG13) (symbols in parentheses are from [15]).
Table. I shows examples of GMR operations and their task
components. In this paper, we also include grasp and release
in the task set because these actions involve a transition in
the contact state between the robot hand and the object.

TABLE I: Examples of GMR operations (modified from
[32])

GMR operation Explanation

Grasp-PTG11-PTG12-PTG13-Release pick, bring, and place something
Grasp-PTG31-Release slide something open
Grasp-PTG33-Release slide something close
Grasp-PTG51-Release rotate something open
Grasp-PTG53-Release rotate something close

Fig. 3. The pipeline of ITES, which involves interaction with users.

B. Stop-and-go teaching to resolve granularity differences

We designed a teaching method that allows users to
effectively teach at the granularity of tasks. First, to enable
users to teach multiple tasks in a GMR operation at once, we
adopted a stop-and-go demonstration technique. This method
involves pausing the hand movements when tasks switch in
order to inform the system of the task transition. For instance,
in a pick-and-place operation, the demonstrator stops the
hand motion when approaching the object, grasping it, lifting
it off the table, carrying it above the table, placing it on the
table, releasing it, and moving the hand to a home position.

Additionally, we adopted a teaching method that alternates
between visual demonstration and verbal instruction, rather
than simultaneously. This is because simultaneous teaching
is considered a form of dual tasking that requires a higher
cognitive load for the user. Such teaching methods may
not be suitable for inexperienced users, especially for the
elderly [33]. To clearly convey the relationship between
verbal and visual demonstrations, the demonstrator provides
step-by-step verbal instruction for the next task at each pause,
rather than giving verbal instructions all at once before or
after visual demonstrations.

IV. IMPLEMENTATIONS OF ITES

This section describes the implementation of ITES
(Fig. 3). ITES comprises two stages, one before and one after
user interaction. In the initial stage, ITES detects times when
a manipulating hand stops and segments the video and speech
accordingly. The speech is transcribed using a third-party
speech recognizer, and the result of segmentation and speech
recognition are previewed for user modification if necessary.
In the later stage, an NLP-based recognizer identifies the
task sequence from the verbal input, and skill parameters
are extracted for each task to compile a task model.
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Fig. 4. (a) An example of the pixel-wise absolute difference between
adjacent luminance images (right panel). In the video, the hand is picking
up the cup. (b) Time series of the luminance change for a stop-and-go
demonstration.

A. System input

We use an Azure Kinect sensor [34] to record RGB-D
images and a speech input during the demonstration. The
sensor is placed in positions that could capture the entire
demonstration. The image resolution is 1280x720, and the
nominal sampling rate for the video and speech is 30 Hz and
48000 Hz, respectively. Noise in the speech was suppressed
using noise filters to improve speech recognition [35].

B. Video segmentation and speech recognition

Given a stop-and-go demonstration, ITES segments the
video and audio at the times when a manipulating hand
stopped. To detect the times, we characterized the intensity
of hand motions based on the changes in luminance [36].
For this calculation, RGB images are converted to YUV
images, and the Y channel is extracted as the luminance.
The luminance images are spatially filtered using a moving
average of 50x50 window, and the pixel-wise absolute differ-
ence is calculated between adjacent frames (Fig. 4(a)). The
mean of the difference is taken as the luminance change
at each time. After removing outliers and applying a low-
pass filter of 0.5 Hz, the local minima of the time series
are extracted as the stop timings (Fig. 4(b)). After the
confirmation of the split timings (in Sec. IV-C), the RGB-D
video and the audio are segmented based on the detected
timings. The split speech is transcribed using a third-party
cloud speech recognition service [37] and previewed to the
user for additional confirmation.

C. Previewing for the user modification

Since the speech content and the correspondence between
video and audio are critical to task recognition and the
extraction of skill parameters, we implemented a feature
that allows users to modify the computation result of video
segmentation and speech recognition. After the luminance-
based video segmentation, the user is prompted for each split
video. The user can ignore videos unrelated to the teaching
(e.g., movements before and after a GMR operation) and
merge over-split videos through a button-based GUI (Fig. 5
(a)). Note that the user gives the demonstration again when
the under-segmentation occurred.

After confirming the video segmentation, the video and
audio are split again, and the resulting audio segments are
transcribed into text using a speech recognition service [37].

Fig. 5. User interfaces for checking the computation result of video
segmentation and speech recognition. (a) An interface to ignore and merge
videos that were segmented by ITES. (b) An interface to correct speech
recognition results.

The transcribed text is then displayed to the user in order so
that the user can modify through a GUI (Fig. 5 (b)).

D. Task recognition

After the interactive correction, each task is recognized
based on the transcribed texts using a language-based recog-
nition model. To train the model, we manually annotated
an existing video dataset of preparing breakfast [38]. We
chose the cooking domain because cooking needs the use of
a variety of foods and tools with manipulation. We labeled
the video with task labels and prepared the video dataset of
a single task using a third-party video annotation tool. The
dataset contained 12 task classes with a total of 1340 videos.
Table II shows the task classes and the number of data.

We collected motion instructions for the egocentric videos
of each task using a crowdsourcing service, called Ama-
zon Mechanical Turk. Specifically, 100 instruction sentences
were collected for each task. Then, we trained a recognition
model to associate each instruction with its corresponding
task. To this end, we prepared a random forest model trained
on top of a fixed BERT model [39]. We collected egocentric
videos to match the perspective of the demonstrator during
teaching, rather than from a third-person perspective. Ta-
ble III shows examples of sentences collected by different
cloud workers. We observed variations in the verbs and nouns
that appear in the instructions. The confusion matrix of task
recognition is shown in Fig. 6, where 10% of the sentences
were used for testing. We conducted ten-fold cross-validation
and obtained an average performance of 83%. This result
suggests that the system can robustly recognize tasks from
natural verbal instructions with variations.

E. Skill parameter extraction

Every task requires skill parameters for robots to decode.
[13], [14]. Once a task is determined, processes called
daemon run to extract the parameters by analyzing the corre-
sponding video. Here we briefly explain the examples of skill
parameters and computation for extracting the parameters.
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TABLE II: Statics of the labeled tasks. Task symbols in [15]
are indicated in parentheses.

Task label Count Mean length (S.E.) (sec)
Picking (PTG11) 122 0.63 (0.03)
Bringing (PTG12) 108 1.46 (0.20)
Placing (PTG13) 113 0.73 (0.05)
Rotating hinge to open (PTG51) 38 1.14 (0.14)
Rotating hinge to close (PTG53) 32 0.75 (0.11)
Wiping (STG2) 30 5.59 (1.42)
Peeling (STG3) 24 3.55 (0.90)
Pouring (STG5) 42 2.26 (0.54)
Holding (STG6) 239 3.50 (0.32)
Cutting (MTG1) 22 4.52 (0.75)
Grasping 464 0.56 (0.02)
Releasing 392 0.37 (0.01)

TABLE III: Examples of sentences collected using a crowd-
sourcing service.

A video of opening a refrigerator door

“Open the refrigerator door.”
“Pull to open the fridge door.”
“Grab the refrigerator handle and pull it to open the door.”

A video of washing a place with a sponge

“Wipe the dish with the sponge in an anti-clockwise direction.”
“Clean the plate with the sponge in your hand.”
“Wipe the plate with the sponge.”

A video of pouring water from a kettle

“Pour water from the kettle into the mug.”
“Pour water from the pitcher into the cup.”
“Empty the water from the kettle into a cup.”

1) The name and the 3D positions of the target object:
The name of the target object is used to help recognize other
skill parameters. We predefined a set of object name and
assumed that users would specify object names verbally. In
the current ITES, an object name is extracted using a third-
party language parser [40]. The 3D positions of the grasped
object is calculated from the RGB-D images.

2) Hand laterality: Hand laterality is crucial information
that relates to other skill parameters, such as grasp type
and approach direction to the target object. To extract hand
laterality, the video of grasping the object is analyzed.
Assuming a constant object location, the 2D location of the
object is extracted from the first RGB image using an object
detector. In the last frame, the 2D locations of both hands
are detected using a hand detector, and the hand used for

Fig. 6. Confusion matrix of task recognition from texts.

Fig. 7. (a) Extracted hand positions and (b) the estimation of the rotat-
ing hinge task.

manipulation is identified as the hand closer to the object.
3) Grasp type: Grasp type is critical for successful task

execution of tasks followed by the grasp [41]. ITES detects
the grasp type using an image classifier model. The image of
the manipulating hand at the last frame of the grasping video
is input into the model, and the grasp type is determined.
The likelihood of grasp types associated with the object
name is also considered to improve the accuracy of the
classification [42], [43].

4) Hand positions and hand trajectory: The demonstra-
tor’s hand motion is crucial for successful task completion
and avoiding collisions with the environment, as well as for
manipulating articulated objects such as doors or shelves.
ITES extracts 3D hand positions during the demonstration
using the 2D hand detector and depth images (Fig. 7(a)).
For rotating hinge tasks, the hand trajectory is parameterized
by applying circular fitting to the hand positions during the
corresponding video (Fig. 7(b)).

5) Human pose: Human pose contains implicit knowl-
edge for achieving tasks efficiently [44]. Following our
previously proposed task model design [14], we encode the
human arm postures at the start and end of each task video.
The 3D poses of the demonstrator are estimated using a third-
party 3D pose estimator [45], and each of the body parts
(upper/lower arms of left and right arms) is encoded into
spatially digitized 26-point directions on the unit sphere.

V. EXPERIMENTS

We tested the proposed ITES based on the performance
of multimodal LfO. To this end, we prepared a multimodal
LfO system by integrating ITES into a task-model decoder
that we had previously implemented. The control policies of
robots were trained using reinforcement learning [41], [46]
on top of our in-house simulator [47]. Since ITES is designed
to be applicable to a wide range of home environments, the
LfO system was qualitatively examined from two aspects: (1)
if the system applies to a wide variety of GMR operations
by combining tasks, (2) if the system provides flexibility for
users to adjust a GMR operation in different scenes.

To check the (1) system applicability, we tested three
GMR operations commonly observed in household situa-
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Fig. 8. Results of multimodal LfO for pick-carry-place a box.

Fig. 9. Results of multimodal LfO for the GMR operation of (a) pick-carry-
place a cup with multiple bringing tasks in-between, (b) throwing away a
cup, and (c) opening a door.

tions: “pick-carry-place a box,”“throw away a cup,” and
“open a fridge.” To check the (2) system flexibility, we
considered a case of a pick-carry-place operation that accom-
panies multiple bring (PTG12) tasks to avoid obstacles. we
tested the system with a humanoid robot [48] and a dexterous
robot hand with four fingers [49].

A. GMR of pick-bring-place an object

Fig. 8 shows the overview of teaching a “pick, carry, and
place a box” operation. This GMR operation consists of
grasp, pick (PTG11), bring from one location to another
(PTG12), place (PTG13), and release tasks. The verbal
input and the visual demonstration are shown at the top
of the figure. The result shows that the demonstration was
successfully executed by the robot. To check the system
flexibility, we tested the “pick-carry-place” operation with
a box placed on a shelf (Fig. 9(a)). For this environment,
several waypoints are required to avoid collision with the
shelf, thus user instructed multiple bring (PTG12) tasks in-
between the pick (PTG11) and place (PTG13) tasks. The
result shows that the multiple bring tasks can be executed
by the robot, suggesting that the system has the flexibility to
allow users to adjust GMR operations to different scenes.

B. GMR of throwing away a cup and opening a door

We tested the applicability of the system to a variety
of GMR operations by teaching additional tasks, including
the operations of throwing a cup away (Fig. 9(b)) and
opening a door (Fig. 9(c)). The throwing operation consists
of grasping, picking (PTG11), bringing from one location to
another (PTG12), and releasing tasks. The opening operation
consists of grasping, opening to a certain range (PTG5),
and releasing tasks. Those operations were completed by the
robot, suggesting that the proposed LfO system can operate
a variety of operations by composing the tasks.

C. Failure cases of task-model recognition

During the experiment, we observed several failure cases.
One is the case where the recorded visual demonstration was
not segmented correctly due to inefficient hand-stop time.
Additionally, we observed several cases when skill-parameter
extraction failed due to the incorrect recognition of hands,
objects, grasp types, and human poses. Such misrecognition
was typically caused by occlusion. For example, an occluded
human hand caused the failure of extracting hand position
and trajectory. In those cases, the user needed to discard the
demonstration and start over.

VI. DISCUSSION

In this paper, we proposed ITES, a pipeline of the task-
model encoder for multimodal LfO. By assuming alternating
stop-and-go visual demonstration and step-by-step verbal in-
struction, GMR operations can be taught at the granularity of
tasks while taking correspondence between visual and verbal
inputs. Additionally, ITES featured an interaction function
in order to allow the user to modify the recognition results
(Fig. 3). Experiments tested the applicability and flexibility
of ITES for various GMR operations in different scenes.
As a result, a robot successfully executed the taught GMR
operations. Although not included in this paper, we have
additionally confirmed that the encoded GMR operations
were operated by another robot with different degrees of
freedom (results are shown in [46]). These results suggest
the usefulness of ITES.

The design philosophy of LfO is similar to low-code/no-
code software development (LCSD), which enables non-
programmers to participate in software development with
minimal coding through a visual platform [50], [51]. Like-
wise, LfO allows non-programmers to program household
robots without coding. However, robot manipulation requires
many skill parameters that are difficult to represent in lan-
guages, such as arm postures and hand trajectories; some
of them are based on common sense and may not be con-
sciously apparent to the demonstrator [52]. Thus, specifying
such parameters solely on a visual platform can be time-
consuming. ITES addresses this challenge by extracting the
parameters from visual demonstration. Our approach extends
LCSD to handle multimodal input.

The method of providing multimodal input is not unique.
As described in Sec. III-B, the present ITES employed a
teaching method that alternates between visual demonstration
and verbal instruction. This approach has the advantage of
explicitly teaching the correspondence between verbal and
visual inputs while limiting the cognitive load on the user.
However, some users may prefer simultaneous teaching to
reduce teaching time, while others may prefer to give all
verbal instructions at the beginning or the end. A further
user study is needed to determine which teaching method is
appropriate from a usability perspective.
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