
Abstract— This paper proposes a new path planning al-
gorithm for robotics called Informed SRRT∗. Compared to
conventional RRT∗ algorithms with Euclidean metrics, our al-
gorithm extends the approach by incorporating a local planner
from SRRT to satisfy both external and internal constraints.
To compute the path to the goal region, we use parameterized
cubic curves instead of computationally expensive numerical
methods. We add two extra lines at the endpoints of the
Bézier spline to leave rooms for the rewiring process. Kinematic
constraints require at least three state connections to be
tweaked during rewiring. The algorithm always ensures that
the path has G2 continuity of curvature within upper-bound
constraints. Simulation results demonstrate that the proposed
method finds shorter paths than SRRT while maintaining the
same iteration of node sampling.

I. INTRODUCTION

Motion planning is a critical task in robotics with appli-
cations in self-driving cars [1], autonomous surface vehicles
(ASVs) [2], and unmanned aerial vehicles (UAVs) [3]. It
is also widely used in other areas, such as manufacturing,
biology, and computing industry [4]. Recent research has
focused on improving the feasibility [5, 6] and optimality
[7–9] of paths, as well as achieving real-time applications
with replanning processes [10, 11]. Motion planning is
typically divided into two parts: global planning, which plans
ahead to avoid static obstacles, and local planning, which
handles the robot’s nonholonomic constraints in real-time.

Global planners use different methods to discretize the
continuous state space. Graph based searches such as D∗

lite [12] build a graph representation of the environment and
search for a path. However, graph-based planners can suffer
from the curse of dimensionality, which occurs when the
number of states increases exponentially with the number
of dimensions, making it difficult to build a graph represen-
tation in high-dimensional spaces. Sampling-based planners
such as RRT [13] randomly sample the state space and
attempt to connect nearby samples. RRT can find a path
quickly in a large-size map due to Voronoi bias property and
has the ability to consider the nonholonomic constraints at
the same time, although it may not guarantee to find a strictly
complete solution. In 2010, it is proved that RRT almost
surely produces a suboptimal path [14]. To address this
limitation, the authors proposed RRT∗, which incorporate
optimal strategies and gain huge popularity in the motion
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planning community in recent years. It guarantees asymp-
totic optimality, meaning that as the number of samples
approaches infinity, the solution will converge to the optimal
path. There are also several improved versions of RRT∗ such
as RRT∗-Smart [15], RRT# [7] and informed RRT∗ [8].

Nonholonomic motion planning is a type of motion
planning that takes into account kinematic and dynamic
constraints such as the robot’s curvature and maximum
turning angles, which cannot be modeled with Euclidean
distance alone. Therefore, using Euclidean distance as a met-
ric to estimate effective distance for nonholonomic motion
planning may not be precise. More detailed explanation can
be seen in [16, 17]. In response to these challenges, a number
of algorithms have been developed that can address the issue
of nonholonomic motion planning. One such algorithm is
CBB-RRT* [16]. CBB-RRT* is a nice algorithm that has
been designed to rearrange the four control points and the
flexible link point between two control states.

Inspired by [7, 8, 17], our method ensures that the node
expansion maintains the feasibility check at all times. In
2D scenarios, it uses the direct sampling method from an
admissible ellipse and modifies the rewire processes from
RRT∗ with additional kinematic constraints. Compared to
the straight line connection, our method needs to re-examine
the feasibility among three states. If the rewired nodes has
its own child nodes, then at least four consecutive states
needs to be reconnected or deleted.

II. PROBLEM FORMULATION

The motion planning problem is described similar as [7,
8] did. Let X ⊆ Rn denote the configuration state space,
where n ⊆ N with n ≥ 2. Xobs ⊊ X be the states in
collision with obstacles. Xfree = cl(X\Xobs) is the non-
collision permissible state space that could be sampled and
expanded for the spanning graph. cl(·) represents the closure
of a set. xstart and Xgoal ⊂ Xfree are the known initial
point and goal region. Let T = (V,E) where V and E
are the finite vertices and edges. Let σ : [0, 1] → Xfree

becomes all the sequence of states that produce a continuous
path for the nonholonomic robot, where σ(0) = xstart

and σ(1) ∈ Xgoal. In [17], the new extended segment
towards the feasible point will be generated by the analytical
algorithm that always below the upper bound curvature
constraints. There are eight control points (B0−3, E0−3) to
generate a continuous curvature among three points (W1−3),
as shown in Fig 1(a).
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The second constraint is a region bounded by the robot’s
maximum turning angles ranged from βmax and βmin. In
Fig 1(b), Pstart is the initial position of the robot and the
dash line represents its direction. P1 is not a feasible point
even though it has the shortest distance compared to P2

and P3. Both P2 and P3 are feasible points for potential
extension since they are within the ranges bounded by the
maximum turning angles.

(a) Eight control points to create a cubic Bézier curve

(b) Illustration of points within maximum turning angles

Fig. 1
The two key variables are angle β and length d0:

β =
γ

2
, d0 =

c4 · sinβ
κmax · cos2 β

(1)

where κmax is the maximum curvature, γ is the angle
between the vector

−−−→
P1P2 and

−−−→
P2P3, the calculation of c4

is shown in [18]. Except the initial and goal point, all the
extended edges d in our algorithm will be at least two times
longer than d0 to satisfied the robot’s allowable maximum
angle β and upper bound curvature constraints κmax.

A ball is employed to incorporate neighboring nodes and
establish potential new connections to reduce costs in RRT∗.
For 2D cases, a radius slightly longer than the minimum
edge length of the tree (Lmin or 2d0) can be used to
define a circle that encompasses potential neighbors xnbr,
excluding the current parent node xnew p. Subsequently,
RRT∗ employs two optimization procedures. The first one
determines whether to re-select the best candidate tree node
within the circle as the parent node for the new node, while
the second one determines whether to re-select the new node
as the parent node for some or all of its neighbor nodes.

The proposed path planning algorithm aims to find a
shorter path Xsol ⊂ Xfree to reach a goal region Xgoal

within a reasonable time frame while maintaining the feasi-
bility of differential constraints (maximum angles α, curva-
tures κ, and their continuity) for all path segments. All sets
of this path must be continuously connected, bounded, and
belong exclusively to the Xfree region.

III. PLANNING ALGORITHM

Our proposed algorithm first requires a feasibility check
of for a new node or a rewired neighbor node:

• G2 continuous curvature ⇔ B0X2 = E0X2

• β(x1, x2, x3) ≤ β
• κdir ≤ κmax ⇔ Lmin or Dist(x1, x2) ≥ 2d0
• graph T ⊂ Xfree ⇔ NoCollisionBézier(x1, x2, x3)

To satisfy all four constraints, it is essential to guarantee
the first one and use function FeasibleBézier(x1, x2, x3)
to check the other three. The function Dist calculates the
Euclidean distance between two states.

Our algorithm has several key features that improve its
effectiveness. First, we add extra kinematic constraints to
the two optimization functions from RRT∗ and ensure proper
connection of the points with Bézier curves. Additionally, we
incorporate the sampling method from Informed RRT∗ that
directly samples nodes in a prolate hyperspheroid. During
the rewiring process of our algorithm, some sub-trees may
be discarded or reconnect to other branches when their
nodes fail the feasibility check of the kinematic constraints.
Although this may affect the previous path that connected to
the goal, we still record and utilize the previous path with the
current smallest cost towards the goal as the semi-major axis.
We use this axis to create an ellipse region that allows for the
direct sampling of new potential promising points within it.
The recorded smallest cost is crucial because it continues
to accelerate the search speed and enables us to find a
shorter path. Lastly, we adopted the idea from RRT# to
apply heuristic constraints, rewiring only promising nodes.
The function LowerCost(x1, x2) includes two conditions:

• c2 +Dist(x1, x2) + Est(x1, xgoal) < cbest
• cnew +Dist(x1, x2) ≤ cnbr

To create a piece-wise Bézier curve that satisfies G2 con-
tinuity using Yang’s method [18], we split the connections
among nodes X1, X2, and X3 into three parts, as shown in
Fig 2. Our local spline planner differs slightly from the one
described in [17] to solve the two-point boundary problem.

The first and third parts of the curve, (M2B0) and
(M1E0), respectively, are either straight lines or nonexistent.
The second part, (B0E0), must satisfy the condition that
the lengths of B0X2 and E0X2, which determine 8 control
points, are always equal. This condition is crucial because
it ensures G2 continuity. This constraint must be satisfied
regardless of whether the curve is created using the steering
function or modified by rewire functions of RRT∗.

The lengths of B0X2 and E0X2 can be equal to or larger
than the minimum length d0. If they are equal, the curve
may have a larger curvature, as shown in Case 1 in Fig 2.
Note that both B0M2 and E0M1 can be zero.

Alternatively, if the extended edges are slightly larger than
d0, we can utilize the rest of the straight line parts, either
M2B0 or M1E0, to create a Bézier curve with a smaller
curvature, as shown in Case 2 in Fig 2. In this case, only
one of B0M2 or E0M1 is set to zero.
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Fig. 2: Methods to connect tree nodes with the new node

Our algorithm builds on the original Informed-RRT∗ and
includes three core functions, as outlined in Algorithm 1.
The first function, Algorithm 2 (Extend), attaches a new
edge from the nearest node, xnearest, towards the new point,
xnew. The second function, Algorithm 3 (SelectforNew),
re-selects a new parent node from the tree for the new node.
Finally, the third function (SelectforNeighbours) checks
whether a new node can serve as the parent node for its
neighbor nodes. We propose three different methods for this
function, the last of which is inspired by [16]:

• Trim leaf nodes only
• Partially cut tree branches
• Deleted nodes reuse as “new” sampled nodes

The SelectForNeighbours function is shown in Algo-
rithm 4.1 (Method 1) and Algorithm 4.2 (Method 2 and 3).

Algorithm 1 Cubic Bézier spline Informed RRT∗

Input: V ← {xstart}, E ← ∅, Xsol ← ∅, q ← ∅
Output: T = (V,E), Xsol

for Iteration= 1, 2, . . . , N do
cbest ← minxsol∈Xsol

{csol}
if q is not empty then

xrand ← q.pop()
else

xrand ← Informed Sample(xstart, xgoal, cbest)

xnearest ← (T , xrand);
xnew ← Extend(T , xnearest, xrand)
Xnbr ← Neighbours(T , xnew, r)
SelectforNew(T , Xnbr, xnew)
if xnew ⊊ V then

SelectforNeighbours(T , Xnbr, xnew, q)
if xnew ∈ Xgoal then

XSol ← XSol ∪ xnew

The first function, Extend, is designed to extend the
edges of the tree more quickly at the early stage. We treat
nodes extended directly from the starting node xnew as a
unique case. This function first extends the edge from the
original point xstart to the middle point M0. This point is
located between the origin xstart and the new point xnew,
and the edge is a straight line. Otherwise, we extend the new
node using a Bézier curve that connects the parent node of
the nearest neighbor xnbr p, the nearest neighbor node xnbr,
and the randomly sampled point xrand. To ensure that the
turning angle does not exceed the maximum allowable value
β, we calculate the direction from xnbr to xrand using the
function Dir(x1, x2). If the resulting Bézier curve does not

intersect with obstacles in the environment, it is added to the
tree. Algorithm 2 shows the details of the Extend function.

Algorithm 2 Extend(T , xnbr, xrand)

xnew ← xnbr +Dir(xnbr, xrand) ∗ Lmin

if xnew p ← xstart then
if CollisionFreeLine(xstart, xnew) then

E ← E ∪ {xstart,M0} in line; V ← V ∪ {xnew}
else if β(xnew, xnbr, xnbr p) < β and

NoCollisionBézier(xnbr p, xnbr, xnew) then
E ← E∪{M1M2} in Bézier curve; V ← V ∪{xnew}

The first part of the rewire process, the function
SelectforNew is shown in Algorithm 3, involves several
constraints that need to be satisfied before a new node can be
added to the tree. Firstly, the new node, the neighbour node,
and its parent node must satisfy the maximum turning angle
constraint β(xnew, xnbr, xnbr p). Secondly, the new edge
must be longer than the minimum required length 2d0 to
avoid exceeding the maximum curvature constraints κmax.
Once these constraints are met, the total cost of reaching the
new node cnew plus the cost of the edge Dist(xnew, xnbr)
must be smaller than the cost-to-come of the neighbour node
cnbr. Additionally, the total cost-to-come and estimate-to-go
Est(xnew, xgoal) must be smaller than the current smallest
cost cbest. If all these conditions are met, the new node
xnew can be added to the tree and connected with a Bézier
curve if it is collision-free. As such, this function follows
the similar optimization procedure as RRT∗ but with an
additional feasibility check.

Algorithm 3 SelectForNew(T , Xnbr, xnew)

if xnew p is xstart then return NULL
for ∀xnbr ∈ Xnbr do

if xnbr is xstart then
if CollisionFreeLine(xstart, xnew) then

E ← E ∪ {xstart,M0} with line
V ← V ∪ {xnew}
Update cnew and cbest, break the loop

else if LowerCost(xnew, xnbr) and
FeasibleBézier(xnew, xnbr, xnbr p) then

E ← E ∪ {M1M2} with Bézier curve
V ← V ∪ {xnew}

Update cnew and cbest

The collision checking strategy needs to consider the
piece-wise segments of the Bézier curve, as illustrated in Fig
3. When the new node xnew is collision-free, the algorithm
attempts to connect it to the nearest node. If the first
connection attempt fails, the algorithm will try to connect
xnew with the other neighbor nodes. However, if both the
Extend and SelectForNew functions fail to establish a
connection for xnew, the sampled node xrand is rejected,
and the algorithm starts a new iteration.

The third function, SelectForNeighbours, involves
three different methods to optimize the RRT tree. The first
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Fig. 3: Collision checking for the initial connection of xnew

method simply rejects a neighbour node xnbr, if it has
one or more child nodes xnbr cld and all its xsucc). This
method provides a quick way to guide the RRT tree to
achieve a sub-optimal path towards the final goal region,
as it only partially optimizes the leaf nodes. The second
method partially prunes branches that are not feasible with
the new constraints, which can be effective in reducing the
path length. The third method treats these infeasible nodes
as “new” sampled nodes, adding them to a queue (q) for
the next iteration. If the node is not rejected, the function
proceeds to rewire two pairs of edges between three states.
The first edge is between the middle points, M1 and M2, of
neighbour node xnbr, new node xnew, and its parent node
xnew p. The second edge is between the middle points, M1

and M2, of the new node xnew, neighbour node xnbr, and all
of its child nodes xnbr cld. The illustration is shown in Fig 4.
The SelectForNeighbours function is shown in Algorithm
4.1 (Method 1) and Algorithm 4.2 (Method 2 and 3).

Algorithm 4.1 SelectForNeighbours(T , Xnbr, xnew, q)

for ∀xnbr ∈ Xnbr do
if xnbr cld exists then

Skip this iteration
if LowerCost(xnbr, xnew) and
FeasibleBézier(xnbr, xnew, xnew p) then

E ← E ∪ {M1M2} with Bézier curve
Update cnbr and cbest

Algorithm 4.2 SelectForNeighbours(T , Xnbr, xnew, q)

for ∀xnbr ∈ Xnbr do
if LowerCost(xnbr, xnew) and
FeasibleBézier(xnbr, xnew, xnew p) then
E ← E ∪ {M1M2} with Bézier curve
if xnbr cld exists then

if FeasibleBézier(xnew, xnbr, xnbr cld) then
E ← E ∪ {M1M2} with Bézier curve

else
Remove xnbr cld and all xsucc (Method 2)
Put xnbr cld and all xsucc into q (Method 3)

Update cnbr, all its cnbr cld and cbest.

One important aspect in the algorithm is the calculation
of the edge length when a new node is added to the tree.
One simple solution is to use straight-lines connected among

(a) Feasibility check among xnbr, xnew, xnew p

(b) Feasibility check among xnbr, xnew, xnbr cld

(c) Some xnbr cld retained, some xnbr cld with its xsucc deleted

Fig. 4: The second rewire process

all sampled points that create a Bézier curve as the length
for the cost. However, to ensure that the ranges of the
ellipse cover enough sampling space, this method requires
additional cost. To obtain a more accurate calculation of the
length of each Bézier curve segment, advanced numerical
methods can be used, as there is no closed-form solution
for the length of cubic or higher-order Bézier curves.

IV. SIMULATION RESULTS

We have developed an optimal cubic Bézier spline RRT
algorithm that incorporates kinematic constraints in Python
3. Simulation 1, depicted in Fig 5, is primarily intended
for illustrative purposes. In Simulation 2, we conducted an
extensive run of 1000 iterations and compared the results to
SRRT, RRT*, and informed RRT*.

The map measures 280m by 280m and is limited to the
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(a) (b)

(c) (d)

Fig. 5: The simulation of Informed SRRT∗ with a narrow passage

first quadrant (x, y > 0). The goal region in simulations is a
circle with a radius of 30m centered at (220m, 240m). The
starting point is set at (30m, 30m). The maximum curvature
κmax, angle 2β and the minimum extended length 2d0 is
set as 0.1, 0.4π and 20.18m, respectively, as suggested
in [17]. For simplicity, our extended length Lmin is fixed
as 30m and our radius r in 2D environment is fixed as
45m. In the figures, the blue cross sign denotes nodes
that have successfully connected to the tree as long as the
edges have no collision with obstacles, while blue circles
represent obstacles. The green curves represent the edges
of the tree, and black dots indicate the connection points
among edges. Due to the map’s resolution of 0.5, some tiny
gaps are acceptable between two black dots. The red path
represents the final path, with a cost close to the optimal
region [Est(xstart, xgoal) ± Dgoal]. We also applied path
smoothing techniques to generate the black path.

Figure 6 illustrates the comparison among Informed
SRRT∗ and three other conventional algorithms. We con-
ducted 20 repeated experiments to compare these four
algorithms, and the average final path lengths, range, and
program running times are presented in Table I. Comparative
results can be found in Figure 7.

a b c d
Range(s) [737.49, [162.37, [267.19, [184.38,

1001.06] 184] 327.16] 205.67]
Tavg(s) 892.29 174.01 300.58 190.95
Lavg(m) 294.3 291.03 322.96 297.11

TABLE I: a: Informed SRRT∗, b: Informed RRT∗, c: SRRT, d: RRT∗

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel sampling-
based algorithm that optimizes the length of the final path 
towards the goal while considering kinematic constraints.

(a) Informed SRRT∗
(b) Informed RRT∗

(c) SRRT (d) RRT∗

Fig. 6: Comparison among Informed SRRT∗, Informed RRT∗,
SRRT and RRT∗ with massive clustered obstacles

These constraints encompass acceptable turning angles and
G2 continuity of the curvature. Our algorithm can effectively
avoid obstacles and extend as piece-wise segments.

During the initial steering process, we accept a newly
sampled point even if it cannot immediately connect to
the nearest point due to path collision. Our optimization
function consists of two main parts. In the first part, we
aim to connect the new sampled node to the best neighbor
node that satisfies kinematic constraints, ensuring collision-
free paths. The selected neighbor is determined based on
the shortest estimated path length to the goal region, along
with the cost from the starting point. In the second part,
we propose three different methods. The first method is
effective in finding an initial feasible path towards the
goal. The second and third methods have the ability to
rewire tree nodes when at least three consecutive nodes
satisfy kinematic constraints. Through simulation results, we
have demonstrated the correctness and effectiveness of the
modified optimization processes from RRT∗ and achieved
similar smoothness like SRRT. Lastly, the path smoothing
techniques further improved the final path.

In addition to the aforementioned contributions, this
method can be extended to informed SRRT#. Unlike RRT∗

using B-splines, our method can pass through the sampled
local control nodes. Going forward, we are interested in
exploring other spline methods and extending this approach
to non-Euclidean state spaces.
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