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Abstract— Virtual reality (VR) is a powerful technology 

that provides a structured and safe environment for ADL 

training, allowing patients to have a similar experience as 

real-world training. However, a limited robot sensing 

system is proven reliable for such training. The 

effectiveness of current robot sensors was limited due to 

inherent technical problems, such as the installation 

challenges of encoders and IMU’s drifting, acceleration, 

and magnetic issues. Thus, we propose a novel and reliable 

sensing system consisting of absolute rotary encoders and 

visual-inertial sensors for the upper-limb exoskeleton in 

VR therapy. Our sensing system has demonstrated angle 

measurement for various robot joint types, including 

hinge, ball, and revolute joints along the limb’s 

longitudinal axis. Its sensing feedback can construct virtual 

arms that interact with virtual objects in the VR 

environment. In our experiments, with Vicon as the ground 

truth, our visual-inertial sensors achieved root-mean-

square errors smaller than 2.3491° and a strong correlation 

( 𝒓 ≥ 𝟎. 𝟗𝟔𝟒𝟎, 𝒑 < 𝟎. 𝟎𝟎𝟏 ). Additionally, the experiment 

result of seven healthy subjects indicated that subjects had 

similar muscle activations, joint ROM, and joint 

trajectories in the VR task with our sensing system, 

compared with the real-world task. Thus, our proposed 

sensing system can potentially be used in the upper-limb 

exoskeleton for VR therapy. 

 
Keywords— Upper-limb exoskeleton, virtual reality (VR), 

rehabilitation robot, visual-inertial sensors, inertial measurement 

units (IMUs) 

I. INTRODUCTION 

Stroke is a neurological disease severely affecting patients’ 

upper limb motor function. Around 80% of stroke patients 

have upper limb motor function impairment [1], and 69% of 

them cannot perform activities of daily living (ADL) 

independently [2]. In recent years, exoskeletons have been 

developed for stroke rehabilitation [3-5]  because they have a 

higher potential to reduce therapists’ workload and provide 

high-dosage, high-intensity, task-oriented, and consistent 

training. In addition, much literature has demonstrated that 

virtual reality (VR) technology can enhance robotic therapies 

[6, 7]; its engaging visual feedbacks enrich the training 

environment and promote motor learning [8].  

Virtual reality (VR) is a powerful technology that provides 

a structured and safe environment for ADL training. 

Simulating ADL tasks in VR allows patients to experience 

similar real-world training [6] and transfer the trained skill to 

real-world scenarios. Further, the therapist can easily adjust 

task difficulties according to patients’ capabilities, such as 

adjusting training goals and parameters like the size and 

position of objects. Besides, VR can guarantee safety in ADL 

training since it will not directly affect patients when they fail 

to complete the ADL task. For example, patients will not get 

injured when they fail ADL tasks like cooking, bread-cutting, 

and water-pouring. Moreover, much literature reported that 

VR could promote recovery in the arm’s range of motion 

(ROM) [9], motor function [10, 11], and ADL function [6], 

improving patients’ quality of life. Furthermore, VR or game-

based training may have a better recovery outcome than 

conventional physical and occupational therapy by motivating 

patients to achieve more repetition of movement [12]. 

Unfortunately, the effectiveness of VR therapy is mainly 

limited by the sensing accuracy of exoskeletons. Their sensors 

can measure the real-time joint angles and arm positions for 

simulating virtual arms and interacting with the VR 

environment. However, sensing errors may confuse patients 

about their virtual arm’s position, affecting their sense of 

presence in VR [13] and the virtual arm control. Besides, 

patients may not train the target muscle or motion with 

inaccurate visual feedback in VR; they may have different arm 

motions and muscle activation to compensate for the sensing 

error. Furthermore, the sensing error may affect the patient 

evaluation regarding joints’ ROM and undesired 

compensatory movement during training. Such sensing errors 

are closely related to the sensor. 

Most rehabilitation exoskeletons have a limited choice of 

sensors for joint angle measurements, particularly for the 

scapula, shoulder, or forearm.  For example, (1) rotary encoder 

in ARMin [14] and ASSITON-SE [15]; and (2) inertial 

measurement unit (IMU) in cable-driven lower limb 

exoskeleton [16] and CAREX-7 [17]. Yet, encoders cannot 

measure spherical movements of shoulder joints and forearm 

rotation without additional mechanical structure, for instance, 

the Gimbal mechanism for spherical movements [18], as well 

as a timing-belt-pulley mechanism [19] and Harmony's 

forearm mechanism [20] for forearm rotation. These 

mechanical structures may be too bulky and impede the 

patients’ motion. Furthermore, the IMU, a lighter and more 

convenient option, has inherent problems because the 

magnetometer is susceptible to a magnetic field near 
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ferromagnetic materials and electronic devices, the 

accelerometer is affected by the exoskeleton motion, and the 

gyroscope has an integration drift issue. Thus, IMU cannot 

provide a reliable angle measurement during long-hour robotic 

rehabilitation training. Nevertheless, there are more choices for 

joint angle measurement, e.g., depth camera [21, 22], flexible 

goniometer [23, 24], and visual-inertial sensors [25-27]. 

Although depth cameras and goniometers are unsuitable for 

exoskeletons due to low sensing frequency and mechanical 

limitation, visual-inertial sensors are promising because of 

their easy-to-install and magnetometer-free property. 

However, a limited exoskeleton has implemented the visual-

inertial sensor to test its feasibility in robot joint measurement.  

The current study aims to develop a reliable sensing system 

for measuring the joint angle of the upper limb exoskeleton in 

VR Therapy, providing a structured and safe environment for 

ADL training. This paper will demonstrate the angle 

measurement of various robot joint types, including hinge 

joints, ball joints, and revolute joints along the limb’s 

longitudinal axis, with absolute rotary encoders and visual-

inertial sensors. Besides, this sensing technique is easy-to-

implement and transferable to other robots without any 

additional mechanical structures. 

The rest of the paper is organized as follows. Section II 

describes the sensing requirements and proposed sensing 

system for joint measurement of the upper limb exoskeleton. 

Section III presents the experimental validation of the sensing 

system and an ADL task with seven healthy subjects. Finally, 

Section IV contains a discussion and potential research 

contributions.  

II.  NOVEL APPROACH TO EXOSKELETON SENSING 

To train stroke patients in VR, the sensing system should 
fulfill two main requirements: (1) measure the joint movement 
for virtual arm construction and (2) detect hand grabbing for 
interacting with virtual objects.  

As for robot joint measurement, measuring the ball joint 
and revolute joints along the limb’s longitudinal axis is 
challenging. Since the Underactuated Upper Limb 
Exoskeleton (UULE) was used to demonstrate the sensing 
system in this paper, sensors for various joint types are needed. 
For example, as shown in Fig. 1, the UULE used three joint 
types: (1) a ball joint for scapula protraction/retraction motion 
(sP/R); (2) hinge joints for shoulder flexion/extension (sF/E), 
elbow flexion/extension (eF/E), and wrist flexion/extension 
(wF/E); and (3) revolute joints for shoulder internal/external 
rotation (sR) and forearm pronation/supination (eR). However, 
the rotary encoder can only measure hinge joints, not ball joints 
with three rotation axes or revolute joints along the limb’s 
longitudinal axis. Also, as mentioned, IMU cannot provide a 
reliable global orientation for the exoskeleton, posing 
difficulty in synchronizing the motion of the exoskeleton and 
virtual arms. So, we applied novel visual-inertial sensors to 
provide the global orientations of ball joints and revolute 
joints. 

During ADL training in VR, hand-grabbing detection is 
required for virtual object manipulation. Given that patients 
need to grab and manipulate the daily objects to perform the 

ADL, the VR ADL training should provide such grabbing 
motions allowing interaction between patients and the virtual 
environment. To detect hand grabbing, we installed a Force 
Sensing Resistor (FSR) sensor on the handle. The FSR detects 
the presence of finger-tip force when the patient grabs the 
handle. When exceeding a defined force threshold, the hand-
grabbing motion is detected, allowing the patient to grab 
virtual objects in VR. 

  
(a) (b) 

Fig. 1. (a) The overview of the UULE exoskeleton worn by a subject. (b) 

The kinematic model. 

A. Proposed Sensing System for Joint Measurement 

To provide reliable global orientations of ball joints and 
revolute joints, the UULE used visual-inertial sensors. As 
shown in Fig. 2, a visual-inertial sensor consists of an IMU and 
camera system with Aruco markers. It fuses computer vision 
and IMU measurements, providing a more reliable global 
orientation. Specifically, computer vision measurement is 
complementary to IMU measurements (without using 
magnetometer data); measurement will not be stopped when 
missing the Aruco markers. However, it will have the same 
IMU drifting issue if missing the marker for an extended 
period. The detailed working principle and fusion algorithm 
can be found in our previous work [26, 28]. In brief, the 
monocular camera faces the user and robot, while the sensor 
modules are installed on the robots. The global pose of the 
ArUco markers can be detected from image processing using 
OpenCV. The transform of coordinate frames between the 
IMU and ArUco marker is precalibrated. Thus, the global 
orientation of the IMU-ArUco sensor module can be estimated 
with an extended Kalman filter (EKF) by fusing the raw 
accelerations, angular velocities, and marker pose. The 
orientations of the sensor module in quaternions are set as state 
variables of the EKF, and integration with the angular 
velocities from the process model. The accelerations and 
marker orientation are then set as the observations in the EKF. 
Since the image capture frequency is much lower than the 
IMU, the marker pose is only fused when available, while the 
accelerations are constantly fused. With the fused 
measurements, the orientation of IMU, expressed in 
quaternions, can be obtained and used in angle measurements 
of ball joints and revolute joints.  

Regarding the ball joint for sP/R, the three rotations along 
axes (i.e., 𝑧0, 𝑧1, 𝑧2) were measured by a visual-inertial sensor 
directly. As shown in Fig. 1(a) and Fig. 2, the sensor was 
installed at the robot’s shoulder joint. After obtaining the 
sensor’s orientation, the quaternions were converted to the 
ZYX Euler angle. Given that the global base frame was defined 
as 𝑥0 − 𝑦0 − 𝑧0 coordinate, the ZYX Euler angles represented 
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the rotations ( 𝑞1, 𝑞2, 𝑞3 ) along 𝑧0 , 𝑦0 , and 𝑥0  respectively. 
Although the conversion between quaternions to the Euler 
angle will have singularity when 𝑞2 is 90° [29], the singularity 
will never occur because 𝑞2 < 90° when attaching the robot to 
human body. Hence, the ball joint’s angles can be measured. 

At the revolute joints along the limb’s longitudinal axis, the 
rotation was measured by two visual-inertial sensors. 
Precisely, the 𝑞5 for sR is the relative rotation of the visual-
inertial sensors at the robot’s shoulder (S1) and elbow joints 
(S2), while the 𝑞7 for eR is the relative rotation of the sensors 
at the elbow (S2) and wrist joints (S3). After obtaining the 
sensors’ orientations, the relative rotation (𝑟) was computed as 
follows.  

𝑟 = 𝜃1
∗ × 𝜃2 (1) 

, where the ‘*’ indicate the conjugate of quaternion and ‘×’ is 
quaternion multiplication. For sR, 𝑟  is the rotation of S2 
relative to S1, while 𝜃1and 𝜃2 are the quaternions obtained by 
S1 and S2, representing the rotations relative to the global base 
frame; for eR, 𝑟 is S3 relative to S2, while 𝜃1and 𝜃2 are the 
quaternions obtained by S2 and S3. After that, the relative 
rotation was converted to the ZYX Euler angle representation. 
So, the rotation of revolute joints along the limb's longitudinal 
axis can be measured.  

Theoretically, the angle of sF/E (𝑞4) and eF/E (𝑞6) can be 
obtained during the computation. However, we apply the 
rotary encoders for sF/E and eF/E because they can be installed 
easily, as shown in Fig. 2, and achieve higher sensing 
frequencies while guaranteeing sensing accuracy, which 
benefits VR and robot control. Likewise, the angle of wF/E 
(𝑞8) is measured by a rotary encoder. 

  
(a) (b) 

Fig. 2. The sensors for sF/E and sP/R at the shoulder joint with (a) back 
view and (b) front view. The number indicates the sensors: (1) absolute 

rotary encoder for sF/E, (2) IMU of visual-inertial sensors for sP/R, and 

(3) Aruco marker of visual-inertial sensors. 

B. Virtual Arm Construction for VR 

The virtual limbs can be constructed in VR for Human-VR 
interaction after obtaining the reliable joint measurement of the 
robot or human limbs. We used a connected virtual limb in an 
arm shape to represent a limb in VR. In literature, there are 
three common limb representations in VR: virtual objects, a 
detached virtual arm, and a connected virtual arm. According 
to [30], virtual arms resembling real arms can develop users’ 
body ownership; however, many existing game scenes used 
objects to represent the limb, e.g., the rectangular bar in the 
ball game [14] and a vehicle in the driving game [31]. 
Additionally, although some VR therapies used virtual arms, 
they used detached virtual forearms or hands, for instance, the 
3D upper limb rehabilitation game for ADL [31]. As proved in 
[32], such detached hands negatively alter users’ body 

ownership and arms control in VR, impacting the training 
outcome of VR therapy. Hence, a connected virtual arm was 
used.  

Furthermore, the virtual arm’s motion was controlled by 
Forward Kinematics (FK) with robot joint measurements. 
After constructing the virtual arm according to the D-H Table 
in Table. 1, we applied FK in Unity3D to control the arm 
motion.  

Another challenge of virtual arm control is the translation 
of virtual arms. Since the scapula allows shoulder translation 
during upper limb motion, the virtual arm should simulate such 
translation because it can visualize the undesired shoulder 
compensatory movement [33], which is essential for patient 
evaluation. Besides, other joints’ movements may differ when 
performing an ADL task without shoulder translation. 
However, limited VR simulated the shoulder translation 
because the robot did not mechanically support [34] or sense 
[35] shoulder translation. The UULE has a passive ball joint 
(sP/R) that conforms to shoulder translation. Given a long 
radius from the rotation axis, between sP/R and sF/E, and a 
small rotation angle (|𝑞2| ≤10° and |𝑞3| ≤10°), the resulting 
movement of the ball joint can be approximated as a horizontal 
translation. And the horizontal translation along x (𝑠1) and y 
axes (𝑠2) can be calculated with the D-H table, 

𝑠 =  [

𝑙1sin (𝑞1)sin (𝑞3) +  𝑙1cos (𝑞1)cos (𝑞3)cos (𝑞2 −  𝑝𝑖/2)
− 𝑙1𝑐𝑜𝑠(𝑞1)𝑠𝑖𝑛(𝑞3) + 𝑙1𝑐𝑜𝑠(𝑞3)𝑐𝑜𝑠(𝑞2  −  𝑝𝑖/2)𝑠𝑖𝑛(𝑞1) 

−𝑙1𝑐𝑜𝑠(𝑞3)𝑠𝑖𝑛(𝑞2 −  𝑝𝑖/2)
] (2) 

Note that the slight vertical offset (𝑠3) is induced by horizontal 
translation, which may not be the patients' intended 
movements. Nevertheless, the shoulder translation can be 
measured to translate the virtual arm. 

TABLE 1 
The D-H parameters of the UULE's kinematic model 

 𝜶𝒊 𝒂𝒊 𝒅𝒊 𝜽𝒊 

0 - 1 −𝜋/2 0 0 𝑞1 

1 - 2 −𝜋/2 0 0 𝑞2 − 𝜋/2 

2 - 3 0 𝑙1 0 𝑞3 

3 - 4 −𝜋/2 0 −𝑙2 𝑞4 

4 - 5 𝜋/2 0 −𝑙3 𝑞5 

5 - 6 −𝜋/2 0 0 𝑞6 

6 - 7 −𝜋/2 0 −𝑙4 𝑞7 − 𝜋/2 

7 - 8 0 𝑙5 0 𝑞8 + 𝜋/2 

III. EXPERIMENT VALIDATION 

A. Hardware of the Proposed Sensing System 

The sensing system, including visual-inertial sensors and 
rotary encoders, was implemented in the PC/104, a real-time 
control system running Linux operating system with the real-
time kernel patch (RT-Preempt). The visual-inertial sensors 
include a monocular camera, an Aruco marker (5cm x 5cm), 
and an IMU. The camera captured images (720 p/120 fps) at 
10 Hz and sent them to PC/104 via serial port for the marker’s 
orientation measurement. Then, the measurement was sent to 
the Teensy board (v4.0) for data fusion. As to the customized 
IMU module with sensor chip (BNO080, Bose, US), the 
inertial data was sampled at 100 Hz and sent to the Teensy 
board with Controller Area Network (CAN) protocol. 
Subsequently, the fused data from the Teensy board was sent 
to the PC/104 for calculating the angles of the ball and revolute 
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joints. Besides, the hinge joints’ movements were measured by 
absolute rotary encoders (Renishaw RLS, RM08), as well as 
the hand motion was detected by 20mm x 20mm FSR and sent 
to PC/104 at 500 Hz. After that, the joint kinematic data was 
sent to a laptop running Unity3D via User Datagram Protocol 
(UDP) at 70 Hz, with 2.983ms of the UDP connection latency.  

 
Fig. 3. The comparison of joint angle, sP/R (𝑞1), between the visual-

inertial sensor and gyroscope. 

B. Joint Measurement using Visual-inertial Sensors 

The experiment is to validate the accuracy of visual-inertial 
sensors compared with the gyroscope of IMU. In this 
experiment, we can observe that the accuracy of visual-inertial 
sensors is better than the IMU, a commonly used sensor in 
existing robots. To compare them fairly, the accuracy of IMU 
is comparable to the IMU in [33]; a similar accuracy was 
achieved with a gyroscope in a short experiment period (< 11 
s). Besides, the ground truth measurement was obtained by an 
eight-camera optical motion capture system (VICON, Oxford, 
UK).  

Visual-inertial sensors can provide more reliable angle 
feedback with accurate amplitudes and shapes, as shown in 
Fig. 3. In the figure, the visual-inertial sensor maintained a 
small max error (<5°), while the gyroscope had errors 
exceeding 15°. Table 2 has further proved that visual-inertial 
sensors have smaller root-mean-square errors (RMSE) of 
joints than the gyroscope. The maximum RMSE of all joints 
was only 2.3491° and had a strong correlation with the ground 
truth ( 𝑟 ≥ 0.9832, 𝑝 < 0.001 ), while the gyroscope had 
5.7080° maximum RMSE, with a weaker correlation (𝑟 ≤
 0.7353 , 𝑝 < 0.001 ). In addition, the errors of our visual-
inertial sensors are comparable with another visual-inertial 
sensor (RMSE 2.7° with correlation 0.87) in [25], as well as 
more minor than other IMU (RMSE 5.6°) in [36] and IMU (4° 
of median error) in [33].  

Likewise, a higher accuracy of visual-inertial sensors can 
be observed in shoulder translation, shown in Table 3. Since 
the shoulder translation was computed with Eqn. (2) and joint 
feedback ( 𝑞1, 𝑞2, 𝑞3 ), sensors with more accurate angle 
feedback can provide more reliable position feedback of the 
shoulder. The maximum RMSE was 7.7097mm, sufficient in 
VR and rehabilitation training since they are far smaller than 
5cm of the compensatory detection requirement [33].  

Hence, visual-inertial sensors can provide higher accuracy 
of joint angle feedback for VR than the existing method with 
IMU. However, we do not know whether the accuracy is 

sufficient to provide a similar training environment as the real 
world. 

TABLE 2 

The comparison of joint angles between the visual-inertial sensor and 
gyroscope 

 Visual-inertial Sensor Gyroscope (IMU) 

 RMSE 

(°) 

Pearson 

Correlation 

Coefficient 

(𝑝 < 0.001) 

RMSE 

(°) 

Pearson 

Correlation 

Coefficient 

(𝑝 < 0.001) 

sP/R (𝑞1) 2.3491 0.9832 5.7080 0.7353 

sP/R (𝑞2) 1.0335 0.9640 1.8440 0.7003 

sP/R (𝑞3) 0.7247 0.9978 4.3427 0.9648 

sR (𝑞5) 2.0742 0.9978 4.1918 0.9985 

eR (𝑞7) 2.2133 0.9990 5.4026 0.9992 

 
TABLE 3 

The comparison of shoulder translation between the visual-inertial sensor 

and gyroscope  

 Visual-inertial Sensor Gyroscope (IMU) 

 RMSE 

(mm) 
Pearson 

Correlation 

Coefficient 

(𝑝 < 0.001) 

RMSE 

(mm) 
Pearson 

Correlation 

Coefficient 

(𝑝 < 0.001) 

sP/R (x) 7.7097 0.7842 15.5894 0.4218 

sP/R (y) 4.6597 0.9978 22.3897 0.9676 

sP/R (z) 0.6808 0.9939 4.6876 0.8662 

C. Evaluation with an ADL Task 

The sensing system was evaluated on seven healthy 
subjects A-G (four females and three males, ages 21-45) who 
were staff or students at the university. All participants 
provided informed consent before participation, and the 
protocols were approved by the Institutional Review Board 
(IRB) of the National University of Singapore (NUS) under 
IRB approval No. (NUS-IRB-2022-337).  

The experiment aims to test the hypothesis that with the 
small kinematic sensing error in VR, subjects can still perform 
a virtual ADL task with (1) muscle activation, (2) joint ROM, 
and (3) joint trajectories similar to a real-world task. Although 
the sensing system has minor errors in joints’ measurements, 
their effect on human motion in VR is unknown. Hence, it is 
challenging to predict the effectiveness of the proposed 
sensing system in future VR therapy. It is necessary to prove 
that subjects can perform similarly in VR. In the experiment, 
subjects performed a burger-transferring task by grabbing the 
burger in a fixed location and transferring it to their mouth. The 
subjects performed the task three times in each experimental 
condition: VR and the real world. The experiment setups in 
both conditions are shown in Fig. 4. During the experiment, (1) 
the subject relaxed and started at 0% of the motion cycle, (2) 
flexed his/her elbow and approached the burger at 30% motion 
cycle, (3) grabbed the burger at 70% of the motion cycle, and 
(4) transferred the burger to his/her mouth at 100% motion 
cycle. After analysis, three main results can be obtained. 

Firstly, the tendency of muscle activation in VR was 
similar to the real world in the motion cycle. To measure 
muscle activation, we used eight EMG sensors (Delsys Trigno 
Avanti Sensor, sampling rate of 2150 Hz) and placed 
them on the subject’s right arm, as shown in Fig 5. Table. 
4 shows the relationship between joint motions, muscles, 
and the EMG sensors. Before analysis, each EMG signal 
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was rectified and filtered with a second-order bandpass 
Butterworth filter with bandwidth 6-800 Hz, smoothened 
by the moving average with 0.2s of window size, and 
normalized to subjects’ maximum voluntary contraction 
(MVC). After that, as shown in Fig. 6, subject A had a 
similar EMG tendency in both VR and the real world. Further, 
such similarity was observed in seven subjects in Fig. 7 (a). 
The seven subjects’ averaged EMG in three repetitions showed 
no statistically significant difference for all muscles, assessed 
by the Wilcoxon signed rank test, and a strong correlation (𝜌 ≥
0.821, 𝑝 < 0.05) with Spearman's rank correlation for most of 
the muscles. Although Ch. 6 (Supinator) did not show the 
correlation statistically, a similar tendency can be observed. 

Secondly, the joint ROM in VR was similar to the real 
world. As shown in Fig. 7 (b), with joint angle feedback of the 
sensing system, all seven subjects’ averaged joint ROM in 
three repetitions indicated no statistically significant difference 
in Wilcoxon signed rank test. Also, most of the joints, except 
𝑞7 and 𝑞8, exhibited a strong Spearman's rank correlation (𝜌 ≥
0.786, 𝑝 < 0.05). But still, a similar joint ROM of 𝑞7 and 𝑞8 
can be observed in the figure. 

Thirdly, the joint trajectories in VR were similar to the real 
world. Fig. 7 shows that subject A had similar joint trajectories 
( 𝑞4, 𝑞6, 𝑞7 , 𝑞8 ) in the motion cycle. Moreover, when 
comparing all the averaged joint trajectories of seven subjects 
in three repetitions under VR and real-world conditions,  most 
of the joints except 𝑞5 and 𝑞7 had a strong Pearson correlation 
( 𝑟 ≥ 0.8179, 𝑝 < 0.01 ), shown in Table 5. The weak-to-
moderate Pearson correlation of 𝑞5  ( 𝑟 = 0.3008 ±
0.4717, 𝑝 < 0.01) and 𝑞7  (𝑟 = 0.2247 ± 0.5330, 𝑝 < 0.01) 
may be attributed to the reasons that the burger-transferring 
ADL task mainly requires elbow movements (𝑞6), shown in 
Fig. 7 (b), and minor orientation differences of the virtual hand 
will not significantly affect the burger-grabbing motion. 
Despite the weak-to-moderate Pearson correlation of these two 
joints, all joints had no statistically significant difference in 
Student’s t-test and had small RMSE (average ≤ 9.3523°), 
showing similar joint trajectories in VR and the real world. 

So, the experiment can preliminarily show that the small 
sensing error will not significantly affect human motion in VR 
in terms of (1) muscle activation, (2) joint ROM, and (3) joint 
trajectories; a similar ADL motion can potentially be trained in 
virtual ADL training with our sensing system. However, more 
human experiments should be conducted to confirm this result 
further. 

  
(a) (b) 

Fig. 4. Experiment setup for (a) VR and (b) the real world. The number 
indicates the devices: (1) camera, (2) IMU, (3) Aruco marker, (4) monitor 

for visual feedback, (5) UULE, and (6) toy burger. 

 

TABLE 4 

The relationship between the motion, muscles, and EMG sensors 

Motion of joint Muscle EMG  

Shoulder flexion Anterior deltoid Ch. 1 

Shoulder extension Posterior deltoid Ch. 2 

Elbow flexion Biceps Ch. 3 

Elbow extension Triceps Ch. 4 

Forearm pronation Pronator teres Ch. 5 

Forearm supination Supinator Ch. 6 

Wrist flexion Flexor carpi radialis (FCR) Ch. 7 

Wrist extension Extensor carpi radialis brevis (ECRB) Ch. 8 

 

 
Fig. 5. The EMG placement on a healthy subject. 

 
Fig. 6. EMG signal and elbow angle of subject A in repetition 3. 

  
(a) (b) 

Fig. 7. (a) The average EMG signal and (b) the average ROM of seven 

subjects. The numbers represent Spearman's Rho (𝜌). 

 
TABLE 5 

The average error and correlation of subjects’ joint trajectories between 
VR and the real world 

 RMSE (°) 

(mean ± 𝑠𝑑) 

Pearson Correlation 

Coefficient (mean ± 𝑠𝑑) 

(𝑝 < 0.01) 

sP/R (𝑞1) 2.6415 ± 3.4470 0.9381 ± 0.0415 

sP/R (𝑞2) 0.6974 ± 0.4902 0.8764 ± 0.1166 

sP/R (𝑞3) 0.8299 ± 0.7486 0.8210 ± 0.0829 

sF/E (𝑞4) 4.2284 ± 2.5656 0.8179 ± 0.1180 

sR (𝑞5) 5.9244 ± 4.3689 0.3008 ± 0.4717 

eF/E (𝑞6) 9.3523 ± 5.7084 0.9432 ± 0.0333 

eR (𝑞7) 4.9317 ± 5.3524 0.2247 ± 0.5330 

wF/E (𝑞8) 3.5305 ± 4.9639 0.8800 ± 0.0924 
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IV. DISCUSSION 

A limited robot sensing system is proven reliable to provide 
a similar virtual environment for rehabilitation training. As we 
know, VR can be so helpful in rehabilitation training that it can 
provide a safe and structured environment for rehabilitation 
training. However, the current robot sensors like rotary 
encoder and IMU will limit their effectiveness. Moreover, 
limited research studies can show that the small sensing error 
of their sensors will not confuse patients and change their 
movement during VR therapy; hence, we cannot conclude that 
the current sensors can provide reliable kinematic feedback for 
VR therapy. 

Thus, a novel and reliable sensing system is proposed for 
robotic therapy with VR technology. The proposed sensing 
system measured the angles of various robot joint types, 
including hinge, ball, and revolute joints along the limb’s 
longitudinal axis, with absolute rotary encoders and visual-
inertial sensors. The sensing feedback can construct the virtual 
arm movement and interact with virtual objects in the VR 
environment. In experiments, visual-inertial sensors were 
proven to provide more accurate angle feedback than the 
gyroscope of IMU, and the errors of visual-inertial sensors are 
comparable with the visual-inertial sensor in [25] and smaller 
than the IMU in [33, 36]. This can demonstrate the use and 
accuracy of visual-inertial sensors in exoskeleton applications, 
while limited literature has implemented such a sensor in 
robots. 

Further, with our proposed sensing system, seven subjects 
showed limited effects of VR on muscle activations, joint 
ROM, and joint trajectories, indicating that the proposed 
sensing system is reliable and accurate enough for 
reconstructing real-world ADL training in VR. These results 
imply the excellent potential for such a sensing system in 
robotic and VR therapy by providing a safe, structured 
rehabilitation training environment that therapists fully 
control. Moreover, such results are transferable to other robot 
devices.  

Additionally, joint measurement can be used in patient 
assessment. Since robot joints align with patients' joints, their 
joint trajectories or ROM can be estimated by the robot joint 
movements. So, such joint trajectories can be used to evaluate 
patients' joint impairments and monitor their recovery. 
Moreover, shoulder translation can be measured for assessing 
shoulder compensatory movement during ADL training, which 
can show whether patients have learned bad-use that impedes 
their recovery, e.g., decreased ROMs of the shoulder and 
elbow joint that are compensated by excessive trunk 
movement and shoulder translation [37-39]. 

REFERENCES 

[1] H. Rodgers et al., "Robot assisted training for the upper limb after 

stroke (RATULS): a multicentre randomised controlled trial," The 

Lancet, vol. 394, no. 10192, pp. 51-62, 2019. 
[2] H. Nakayama, H. S. Jorgensen, H. O. Raaschou, and T. S. Olsen, 

"Recovery of upper extremity function in stroke patients: the 

Copenhagen Stroke Study," Arch Phys Med Rehabil, vol. 75, no. 4, 
pp. 394-8, 1994. 

[3] G. Bao et al., "Academic Review and Perspectives on Robotic 

Exoskeletons," IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, vol. 27, no. 11, pp. 2294-2304, 2019. 

[4] F. Molteni, G. Gasperini, G. Cannaviello, and E. Guanziroli, 

"Exoskeleton and End-Effector Robots for Upper and Lower 

Limbs Rehabilitation: Narrative Review," PM&R, vol. 10, no. 9S2, 
pp. S174-S188, 2018. 

[5] S. H. Lee et al., "Comparisons between end-effector and 

exoskeleton rehabilitation robots regarding upper extremity 
function among chronic stroke patients with moderate-to-severe 

upper limb impairment," Scientific Reports, vol. 10, no. 1, p. 1806, 

2020. 
[6] X. Chen, F. Liu, S. Lin, L. Yu, and R. Lin, "Effects of Virtual 

Reality Rehabilitation Training on Cognitive Function and 

Activities of Daily Living of Patients With Poststroke Cognitive 
Impairment: A Systematic Review and Meta-Analysis," Archives 

of Physical Medicine and Rehabilitation, vol. 103, no. 7, pp. 1422-

1435, 2022. 
[7] D. Jack et al., "Virtual reality-enhanced stroke rehabilitation," 

IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 9, no. 3, pp. 308-318, 2001. 
[8] M. Levin, P. Weiss, and E. Keshner, "Emergence of Virtual Reality 

as a Tool for Upper Limb Rehabilitation," Physical therapy, 2014. 

[9] A. V. Soares, S. S. Woellner, C. d. S. Andrade, T. J. Mesadri, A. D. 

Bruckheimer, and M. d. S. Hounsell, "The use of Virtual Reality 

for upper limb rehabilitation of hemiparetic Stroke patients," 

Fisioterapia em Movimento, vol. 27, pp. 309-317, 2014. 
[10] P. Domínguez-Téllez, J. A. Moral-Muñoz, A. Salazar, E. Casado-

Fernández, and D. Lucena-Antón, "Game-Based Virtual Reality 

Interventions to Improve Upper Limb Motor Function and Quality 
of Life After Stroke: Systematic Review and Meta-analysis," 

Games for Health Journal, vol. 9, no. 1, pp. 1-10, 2020. 

[11] M. Park et al., "Effects of virtual reality-based planar motion 
exercises on upper extremity function, range of motion, and health-

related quality of life: a multicenter, single-blinded, randomized, 

controlled pilot study," Journal of NeuroEngineering and 
Rehabilitation, vol. 16, no. 1, p. 122, 2019. 

[12] R. Karamians, R. Proffitt, D. Kline, and L. V. Gauthier, 

"Effectiveness of Virtual Reality- and Gaming-Based Interventions 
for Upper Extremity Rehabilitation Poststroke: A Meta-analysis," 

Archives of Physical Medicine and Rehabilitation, vol. 101, no. 5, 
pp. 885-896, 2020. 

[13] H. Si-Mohammed et al., "Detecting System Errors in Virtual 

Reality Using EEG Through Error-Related Potentials," in 2020 
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 

2020, pp. 653-661.  

[14] T. Nef, M. Mihelj, and R. Riener, "ARMin: a robot for patient-
cooperative arm therapy," Medical & Biological Engineering & 

Computing, vol. 45, no. 9, pp. 887-900, 2007. 

[15] M. A. Ergin and V. Patoglu, "ASSISTON-SE: A self-aligning 
shoulder-elbow exoskeleton," in 2012 IEEE International 

Conference on Robotics and Automation, 2012, pp. 2479-2485.  

[16] B. Zhong, K. Guo, H. Yu, and M. Zhang, "Toward Gait Symmetry 
Enhancement via a Cable-Driven Exoskeleton Powered by Series 

Elastic Actuators," IEEE Robotics and Automation Letters, vol. 7, 

no. 2, pp. 786-793, 2022. 
[17] X. Cui, W. Chen, X. Jin, and S. K. Agrawal, "Design of a 7-DOF 

Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for 

Dexterous Motion Training or Assistance," IEEE/ASME 
Transactions on Mechatronics, vol. 22, no. 1, pp. 161-172, 2017. 

[18] R. Soltani-Zarrin, A. Zeiaee, A. Eib, R. Langari, N. Robson, and R. 

Tafreshi, "TAMU CLEVERarm: A novel exoskeleton for 
rehabilitation of upper limb impairments," in 2017 International 

Symposium on Wearable Robotics and Rehabilitation (WeRob), 

2017, pp. 1-2.  
[19] T. Nef, M. Mihelj, G. Kiefer, C. Perndl, R. Muller, and R. Riener, 

"ARMin - Exoskeleton for Arm Therapy in Stroke Patients," in 

2007 IEEE 10th International Conference on Rehabilitation 
Robotics, 2007, pp. 68-74.  

[20] B. Kim and A. D. Deshpande, "An upper-body rehabilitation 

exoskeleton Harmony with an anatomical shoulder mechanism: 
Design, modeling, control, and performance evaluation," The 

International Journal of Robotics Research, vol. 36, no. 4, pp. 414-

435, 2017. 
[21] Z. Moore, C. Sifferman, S. Tullis, M. Ma, R. Proffitt, and M. 

Skubic, "Depth Sensor-Based In-Home Daily Activity Recognition 

and Assessment System for Stroke Rehabilitation," in 2019 IEEE 

589



International Conference on Bioinformatics and Biomedicine 

(BIBM), 2019, pp. 1051-1056.  

[22] M. Elgendi, F. Picon, N. Thalmann, and D. Abbott, "Arm 
movement speed assessment via a Kinect camera: A preliminary 

study in healthy subjects," BioMedical Engineering OnLine, vol. 

13, 2014. 
[23] A. Tognetti, F. Lorussi, N. Carbonaro, and D. De Rossi, "Wearable 

Goniometer and Accelerometer Sensory Fusion for Knee Joint 

Angle Measurement in Daily Life," Sensors, vol. 15, no. 11, pp. 
28435-28455.  

[24] H. Hayashi and H. Shimizu, "Essential motion of 

metacarpophalangeal joints during activities of daily living," 
Journal of Hand Therapy, vol. 26, no. 1, pp. 69-74, 2013. 

[25] R. Mallat, V. Bonnet, M. A. Khalil, and S. Mohammed, "Upper 

Limbs Kinematics Estimation Using Affordable Visual-Inertial 
Sensors," IEEE Transactions on Automation Science and 

Engineering, pp. 1-11, 2020. 

[26] T. Li, X. Wu, H. Dong, and H. Yu, "Estimation of Upper Limb 
Kinematics with a Magnetometer-Free Egocentric Visual-Inertial 

System," in 2022 International Conference on Robotics and 

Automation (ICRA), 2022, pp. 1668-1674.  

[27] Y. Lee, W. Do, H. Yoon, J. Heo, W. Lee, and D. Lee, "Visual-

inertial hand motion tracking with robustness against occlusion, 

interference, and contact," Science Robotics, vol. 6, no. 58, p. 
eabe1315, 2021. 

[28] T. Li, T. M. Kwok, X. Wu, S. Ding, and H. Yu, "Visual-Inertial 

Sensor System for Robot-Assisted Upper Limb Rehabilitation," in 
IEEE Int. Conf. Adv. Robot. Mechatron., 2023.  

[29] C. W. Kang and C. G. Park, "Euler Angle Based Attitude 

Estimation Avoiding the Singularity Problem," IFAC Proceedings 
Volumes, vol. 44, no. 1, pp. 2096-2102, 2011. 

[30] M. Pyasik, G. Tieri, and L. Pia, "Visual appearance of the virtual 

hand affects embodiment in the virtual hand illusion," Scientific 
Reports, vol. 10, no. 1, p. 5412, 2020. 

[31] G. Jin, K. Jiang, and S. Lee, "Development of Virtual Reality 

Games for Motor Rehabilitation," Journal of Telecommunication, 

Electronic and Computer Engineering, vol. 10, pp. 87-94, 2018. 
[32] S. Seinfeld and J. Müller, "Impact of visuomotor feedback on the 

embodiment of virtual hands detached from the body," Scientific 

Reports, vol. 10, no. 1, p. 22427, 2020. 
[33] A. Passon, T. Schauer, and T. Seel, "Inertial-Robotic Motion 

Tracking in End-Effector-Based Rehabilitation Robots," (in 

English), Frontiers in Robotics and AI, vol. 7, no. 167, 2020. 
[34] L. I. Lugo-Villeda, A. Frisoli, E. Sotgiu, G. Greco, and M. 

Bergamasco, "Clinical VR applications with the light-exoskeleton 

for upper-part neurorehabilitation," in 19th International 
Symposium in Robot and Human Interactive Communication, 2010, 

pp. 1-6.  

[35] M. A. Gull et al., "A 4-DOF Upper Limb Exoskeleton for Physical 
Assistance: Design, Modeling, Control and Performance 

Evaluation," Applied Sciences, vol. 11, no. 13, p. 5865, 2021. 

[36] P. Slade, A. Habib, J. L. Hicks, and S. L. Delp, "An Open-Source 
and Wearable System for Measuring 3D Human Motion in Real-

Time," IEEE Transactions on Biomedical Engineering, vol. 69, no. 

2, pp. 678-688, 2022. 

[37] W. Liu, S. McCombe Waller, T. M. Kepple, and J. Whitall, 

"Compensatory arm reaching strategies after stroke: induced 

position analysis," (in eng), Journal of rehabilitation research and 
development, vol. 50, no. 1, pp. 71-84, 2013. 

[38] F. Grimm, G. Naros, and A. Gharabaghi, "Compensation or 

Restoration: Closed-Loop Feedback of Movement Quality for 
Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm 

Exoskeleton," (in English), Frontiers in Neuroscience, vol. 10, 

2016. 
[39] M. F. Levin, D. G. Liebermann, Y. Parmet, and S. Berman, 

"Compensatory Versus Noncompensatory Shoulder Movements 

Used for Reaching in Stroke," Neurorehabilitation and Neural 
Repair, vol. 30, no. 7, pp. 635-646, 2015. 

 

590


