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Abstract—Energy consumption is receiving increasing atten-
tion due to environmental concerns. There is a high optimiza-
tion potential concerning the energy consumption of industrial
machines. Extensive research has been performed concerning
geometry optimizations and motion profile optimizations towards
energy-optimal point-to-point mechanisms. A co-optimization ap-
proach that integrates geometry and motion profile optimization
in one architecture, outperforms methods that optimize motion
profiles with suboptimal geometries, or vice versa. However,
limited research focuses on co-optimizing geometry and motion
profiles in one architecture. Therefore, a simultaneous, sequential,
and nested co-optimization architecture is set up and compared.
The most optimal motion profile and link lengths are determined
for an industrial mechanism, resulting in a root mean square
(rms) torque saving of 49.2%. To improve computational speed,
a method that uses the derivation of a torque equation from
three CAD simulations has been utilized. This method facilitates
rapid convergence of the nested co-optimization. As a result, the
major difference between the three co-optimization methods lies
in the ability to converge rapidly to the minimum. This study
demonstrates the nested co-optimization’s capacity to identify an
enhanced optimum, reducing the computational time by 74.4%
compared to the simultaneous co-optimization and by 78.3%
compared to three sequential iterations.

Index Terms—Co-optimization; point-to-point; mechanism;
energy-optimal; geometry; motion profile; CAD-based

I. INTRODUCTION

The climate crisis has increased the significance of the
energy consumption of electric motors [1]. Moreover, energy
usage is expected to rise by 50% between 2018 and 2050 [2].
Furthermore, in 2015, electric motors accounted for 53% of
the worldwide electricity consumption [3]. These statements
emphasize the importance of optimization procedures that
decrease the energy demand of electric motor systems.

This paper compares three co-optimization techniques to
optimize point-to-point (PTP) mechanisms to reduce energy
consumed by electric motors. The co-optimizations aim to
combine both geometry and motion profile optimization. Ge-
ometry optimization focuses on optimizing the link lengths
of the mechanism [4]. Motion profile optimization determines
the optimal trajectory of the electric motor to minimize the
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energy consumption of the point-to-point (PTP) movement
[5]. Various architectures for co-optimizations are described
in [6]. In this work, three approaches for co-optimization are
introduced and applied to an industrial mechanism. The first
co-optimization architecture is a simultaneous co-optimization
that optimizes the motion profile and geometry by considering
all the design parameters simultaneously. The second co-
optimization architecture is the sequential approach that firstly
optimizes the geometry and, secondly, optimizes the motion
profile iteratively. The third co-optimization architecture is
a nested co-optimization that optimizes the link lengths in
an outer loop, and an inner optimization loop identifies the
optimal motion profile for each set of link lengths determined
by the outer loop. The optimization objective is the root mean
square torque (7.,,s) of the motor, as [5] shows that T,
is an effective objective to minimize the total energy usage
of the system, provided that frictional forces are negligible.
The latter is the case in high-dynamical industrial applications,
particularly if inertial loads are predominant [7], as in this case.

According to previous research [8]-[10], the simultaneous
and nested approach deliver better results than the sequential
approach. However, the nested approach is thought to be
computationally expensive and it can have potential feasibility
issues [11]. Nevertheless, a nested approach can converge
faster to an optimal solution than a simultaneous approach,
provided that efficient inner loop solving methods are used
[12].

In [13], a co-optimization framework based on hierarchical
deep reinforcement learning is used to optimize the configu-
ration and motion of a chain-type modular robot. The robot
is optimized towards time consumption, task completion rate,
and energy consumption to avoid obstacles, find targets, and
climb stairs. Another work [14], proposed a bilevel co-design
optimization for energy-efficient legged robots. The bilevel
optimization framework is similar to a nested co-optimization
as it optimizes geometric parameters in an outer loop and
motion planning in an inner loop. A similar co-optimization
problem is addressed in [15]. In [16], different co-optimization
architectures are compared that are suited for the co-design of
control systems and physical systems. However, the proposed
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architectures are not proven to be easily applicable and are not
validated as they are only conceptual. In [17], co-optimization
was used to optimize the structural strength and the controller
for the feed drive system of machine tools, improving the
overall system dynamic characteristics. A recent study [18],
simultaneously optimized the motion and the link shapes to
reduce the energy consumption of a six-degrees-of-freedom
serial manipulator and a parallel five-bar linkage. A Lie group-
based mesh deformation model has been used to model the
kinematics and dynamics of the mechanism. However, the
model introduces errors in estimating the inertial parameters.
In [19], design parameters, including link lengths, multiple
actuator placements, and contact forces, are optimized to-
wards minimal torque for multiple robots, including a four-bar
mechanism. However, the motion profiles of the actuators are
not optimized. Furthermore, in [19] an analytical method, i.e.
the implicit function theorem, is used to obtain the objective
function and constraints.

Nevertheless, the papers mentioned above utilize analytical
methods for describing system properties and formulating
objective functions, which can be time-consuming, complex,
and prone to errors when applied to different mechanisms. A
more advantageous approach is to use computer-aided design
(CAD) simulations, which are already widely used in the
industry to design the machine.

This paper adds the following improvements to the state-
of-the-art literature:

e CAD-based co-optimization: The literature only uses
case-specific and complex analytic formulations of the
objective function for co-optimizations [13]-[15], [18],
the method in this paper uses CAD and is applicable to
all point-to-point mechanisms.

o Novel nested co-optimization: A novel nested co-
optimization methodology is developed that obtains the
objective function more efficiently by extracting system
properties from the mechanism with three CAD simu-
lations so a torque equation can be set up in the outer
optimization loop. An evident approach would use a CAD
simulation in the inner optimization. However, this causes
longer solve times.

o Comparison of co-optimization architectures: In [18],
an energy-optimal co-optimization of geometry and mo-
tion profile based on an analytic objective function
is presented, however, a comparison of different co-
optimization architectures is missing. Previous literature
has only compared co-optimization architectures that
optimize different parameters than link lengths and mo-
tion profiles or different objectives than 7.5 [8], [17],
[19]. This paper compares three co-optimization archi-
tectures, simultaneous, sequential, and a novel nested
co-optimization aimed at achieving energy-optimal link
lengths and motion profiles for an industrial point-to-
point mechanism.

This paper is structured as follows. Section II describes
the case and explains its important parameters. Subsequently,

section III gives information about motion profile optimization
and the different scaling factors that are used, followed by a
discussion on the determination of the number of design pa-
rameters. Section IV discusses how the geometry optimization
works. After that, section V provides an extensive explanation
of the co-optimization methods. Subsequently, the selection
of the optimization algorithm is clarified in section VI. The
results of the different optimizations are shown and discussed
in section VII.

II. CASE STUDY

The co-optimizations are applied to an industrial case study
featuring an in-line slider-crank mechanism comprising three
interconnected links. As shown in Figure 1, this mechanism in-
cludes a green-colored crank /1, and two pink-colored couplers
l2, which are both parametrized and the end effector indicated
in red. The end effector is constrained to a vertical path and
paired with a symmetric counterpart — the yellow slider. This
yellow end effector moves opposite to the red end effector. The
mechanism’s motion is driven by an electric motor, positioned
at the top of Figure 1 and colored in grey.

Start position
ty,=0s

End position
tg = 0.04197 s

L End
effectors

Fig. 1. The motor and the links /1 and [ displace the two end effectors (in
red and yellow) to the needed end position. In this case, the absolute motion
over AZ should be completed in 0.04197s.

For the application, the distance between the two end
effectors AZ in start-position and end-position is a design
requirement and, consequently, fixed during the optimization
(as shown in Figure 1). Consequently, the start angle is denoted
as 04 and the end angle as 6. Changes according to the link
lengths [y and l5. Another design requirement is the motion
starting time ¢4 and end time g, in this case, t4 = 0 s and
tp = 0.04197 s, which are determined by the manufacturer.
In addition to the earth’s gravity, the mechanism experiences
no external loads.

III. MOTION PROFILE OPTIMIZATION

Motion profile optimization optimizes the trajectory of the
motor to minimize 7.,,,s, as [5] shows that T}.,,, is an effective
objective to minimize the total energy usage of the system.
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According to [5], the motion profile §(t), where t € [t4,t5],
is best described by a polynomial with a Chebyshev base of
degree n: Y., c/Ty(x). To use this representation for the
motion profile, a rescaling for the time ¢ from the interval
[ta,tB] to [—1,1] of z is needed. To achieve this rescaling, a
linear transformation [20] is used:

2 tp+1ta
T = t—

= =at—> 1
— a (1

ip—ta

Furthermore, the position § € [64,605] is also rescaled to
the interval ¢ € [—1,1], to obtain bounds on the motion
profile coefficients ¢ = [co, 1, ..., cn]T, for an n-th degree
polynomial. The rescaling of the position ¢ can be achieved
through the following transformation [5]:

2 0+ 0
6= g BTIA _
0 B — 0 A 0 B — GA
Constraints of zero speed qS and zero acceleration ¢ need
to be set up for the point-to-point movement in the start and
end position:

¢(-1) =1, ¢(-1)=0, ¢(-1)=0,

. . (3)
¢(1) =1, ¢(1) =0, (Z)(l) =0.

These constraints imply that the lower degree coefficients
[co, - - ,c5]T can be written as a function of the remaining
coefficients [cg, . . ., cn]T. Consequently, the coefficients ¢ =
[c6,-..,cn]" are design parameters (DPs).

Citing [5], the rescaling of position 6 from [04,605] to
[-1,1] enables the determination of bounds for the design
parameters ¢ = [cg, . . kE

ed—f 2)

-y Cn

4
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Generally, the motion profile optimization problem can be
formulated as follows:

minimize  Typs(c)

ceRn—5
. 4
subject to  |c| < —
T

A. Motion profile DPs convergence analysis

The savings in T;.,,s are directly influenced by the number
of design parameters Npp, utilized in optimizing the motion
profile. However, as the number of DPs Npp increases, the
solving time t¢,; for the optimization algorithm also increases.
To consider the trade-off involved, a convergence analysis has
been conducted to determine the appropriate number of design
parameters Npp for the motion profile.

Based on the convergence analysis (Figure 2), four design
parameters (DPs) are selected, as a higher Npp does not result
in significant savings and would increase the computational
cost of the optimization (as shown in Figure 2). Four design
parameters result in the following coefficients to be optimized:
6, C7, Cg, and cg, which corresponds to a polynomial degree
n = 9. The motion profile optimization was executed utilizing
a gradient-based optimization algorithm according to [5].

2 0.9
2 0.7
& 05
0 4 8 12
F . /*
2,
~ 20+ |
K
3
0 * ‘ ‘
0 4 8 12

number of DPs Npp

Fig. 2. Four design parameters (DPs) are selected as the 7%, s has converged
around four DPs and an increasing number of DPs Np p results in increasing
solve time tgo;.

IV. GEOMETRY OPTIMIZATION

Geometry optimization minimizes 7, as [5] shows that
T,ms 1s an effective objective to minimize the total energy us-
age. The geometry optimization is apglicable for a mechanism
with m link lengths r = [l1,...,{,,]", which are constrained
by specific lower bounds (I} in) and upper bounds (/5 maz)
per link length /;. The geometry optimization problem can be
formulated as follows:

minimize Ty (r)
rER’IYL
SubjeCt to l]mzn S l] S lj;m,axa ] - ]-7 cee,Mm

Despite the simple structure of a slider-crank mechanism, an
analytical approach to simulate its dynamic behavior has been
avoided as it is error-prone and case-specific, which limits its
general applicability and usability by machine builders [4].
To calculate the objective T),,s based on the link lengths
r, CAD simulations are employed that are applicable to any
mechanism, given the CAD models provided by machine
builders.

As indicated in [4], the initial stage of determining the
motor torque 7, for a mechanism with varying geometry
parameters involves determining end angle 65 for the motor.
The required displacement of the end effectors allows for the
derivation of g through an inverse kinematics simulation (see
Figure 3). To obtain 65, the mechanism needs to be driven
from the end effector with a predefined absolute distance
AZ. Furthermore, the inverse kinematic simulation acts as a
feasibility check, as certain combinations of DPs r, are not
able to displace the end effectors to the predefined distance
AZ. If the link lengths can not provide the mechanism to
travel the required distance AZ, the design is considered
infeasible, and the optimization algorithm will choose new
DPs. If the link lengths are feasible, the end angle 0p is
extracted and used in the subsequent dynamic simulation.
The dynamic simulation drives the mechanism at the green-
colored crank, with a certain motion profile until the end angle
fp is reached. Subsequently, this simulation calculates the
motor torque to return the 7;.,,s value as the objective to the
optimization algorithm.
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Fig. 3. The workflow to obtain the motor torque for certain design parameters
(DPs): 11 and 5.

V. CO-OPTIMIZATIONS

In order to increase energy saving, the geometry and mo-
tion profile optimization are combined in a co-optimization
architecture. Three different approaches are proposed and
compared, a simultaneous co-optimization, a sequential
co-optimization, and a nested co-optimization. The co-
optimizations minimize 7.,,s by optimizing link lengths r,
which are constrained by lower bound [; ,,,;, and upper bound
lj,maz and by optimizing the motion profile coefficients c, of
which the constraints are determined in section III. The co-
optimization problem is formulated as follows:

minimize  T,s(r, €)
reR™, ceRm =5

subject to Limin <l <limaz, j=1,...,m

4
el < =
m

To solve an optimization problem, a communication needs
to be set up between an optimization algorithm and the objec-
tive function. Journaling plays a vital role in establishing the
communication of optimizations that utilize CAD simulations.
The journal is a script that can send parameters, e.g. link
lengths and motion profile coefficients to the CAD software
and it enables the extraction of results from the CAD software.

The first step of all three optimization methods is a kine-
matic simulation that determines the end position g and
checks the feasibility of the design, as explained in section
IV. The following steps are dependent on the type of opti-
mization method and are therefore discussed in the following
subsections.

A. Simultaneous co-optimization

The simultaneous co-optimization optimizes the motion
profile and geometry by simultaneously considering all the
design parameters s = [r; c] (as shown in Figure 4). This type
of architecture is believed to have a lower chance of getting
stuck in local minima than sequential optimization (described
in subsection V-B) [8] .

The motion profile is sent as coefficients [co, . .., c,]" to
the CAD software together with the link lengths [I1, . . ., ;)" .
To drive the mechanism at the motor, a built-in polynomial
motion function with a Chebyshev base is used in the CAD
software where a time variable ¢ is used in the interval [t 4, t 5],
which delivers a motion profile 6(t), where 6 € [04,6g]. The
coefficients that are sent to the CAD software are determined
for a motion profile ¢(z), where ¢ € [—1,1] and x € [-1,1].

Consequently, the time variable ¢ in the CAD motion function
must be rescaled by rewriting the scaling factors in Equation
(1), and the angles need to be rescaled by rewriting the scaling
factors in Equation (2). The driver can now simulate the
mechanism with the chosen link lengths and correct motion
profile s in CAD software and calculate the motor torque T, .

The optimization algorithm cannot find an optimal solution
as the difference in the order of magnitude between the DPs of
the geometry r and the DPs of the motion profile c is too big.
Therefore the geometry DPs: I; and ls, expressed in [mm]
for the CAD simulation, are rescaled for the optimization
algorithm with a factor SF, = 1076 to the rescaled link
lengths {1, and l5, r (see Table I).

B. Sequential co-optimization

Another common method is sequential co-optimization, this
method first optimizes the geometry, and subsequently, the
optimized link lengths are used as input parameters for motion
profile optimization. This order is preferred as the geometry
influences the behaviour of the system more than the motion
profile [17]. After an optimal motion profile is found, another
iteration can start with the optimized profile (as shown in
Figure 4), until the T,,,s is converged. The optimization of
the motion profile involves extracting the system properties to
formulate a torque equation (Equation (5)), which accelerates
the solve time t4,;. This equation will be discussed in detail
in subsection V-C Nested co-optimization.

C. Nested co-optimization

A novel nested co-optimization architecture is proposed
to ensure fast convergence to an optimal solution. A nested
architecture optimizes the link lengths in an outer loop, and
an inner optimization loop identifies the optimal motion profile
for each set of link lengths determined by the outer loop (as
shown in Figure 4). Separating the motion profile optimization
from the geometry for a co-optimization makes it possible to
obtain the objective function in several ways for the motion
profile optimization. It would be obvious to directly use a CAD
simulation to calculate T.,,,s as the objective function, such as
in simultaneous co-optimization. However, this would lead to
long solve times t4,; when the CAD simulations are executed
inside the inner optimization loop of the motion profile. To
reduce the solve time ¢,,;, a novel nested co-optimization is
developed that obtains the objective function more efficiently
by extracting system properties load torque 7; and inertia J
with three CAD simulations [21] so a torque equation [22]
can be set up in the outer optimization loop. This is the torque
equation [22]:

Ty(0) + J(0)6 + 1OU—@(é)2 +

T =

Ts(6) (5

The frictional forces T’y (0) are negligible in high-dynamical
industrial applications, especially if the inertial loads are pre-
dominant [7]. The system properties 7; and J remain constant
across all motion profiles, allowing the extraction process to
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Fig. 4. Workflow of the simultaneous and nested co-optimization architecture for one sample and the sequential optimization for one iteration.

be positioned outside the motion profile optimization loop. A
detailed explanation of the system properties extraction can
be found in [21]. After obtaining the torque equation, it takes
less than one second to determine the optimal motion profile
[5]. Once the optimal motion profile is found, the associated
torque is sent back to the outer loop optimization algorithm
that will choose new link lengths until the geometry converges
to a minimum. Due to the ability to obtain an optimal motion
profile rapidly, it becomes viable to optimize more DPs for
the motion profile, which further reduces 7T..,,s, with a slight
increase in solve time t,, (as shown in Figure 2).

VI. OPTIMIZATION ALGORITHM SETTINGS

All three optimization methods use the same optimization
algorithm settings from the MATLAB Optimization Toolbox,
which are shown in Table 1. For the optimization algorithm, a
gradient-based method, namely SQP, has been selected as it is
computationally cheap, even if a substantial amount of design
parameters are chosen [23]. It is also one of the most effective
methods for nonlinearly constrained optimizations and can be
utilized for both small and large problems [24]. Furthermore,
SQP has shown that it is an excellent optimization algorithm
for both geometry optimizations [4] and motion profile opti-
mizations [5].

VII. RESULTS

The three different co-optimizations have been tested on the
in-line slider-crank mechanism starting from two different ini-
tial designs to evaluate their performance. In addition, the ge-
ometry and the motion profile optimization are executed sepa-
rately as a performance reference for the co-optimizations. The
optimizations were performed using MATLAB and Siemens
NX, with licensed access through an ethernet connection on an

TABLE 1
THE SETTINGS CONCERNING THE OPTIMIZATION ALGORITHM USED FOR
ALL THE OPTIMIZATIONS.

Setting Value

Optimization algorithm SQP
Finite difference type Forward

Finite difference step size € 10~7

[26 - 10~5; 40 - 10~9]
[100 - 10~5; 350 - 10~ 9]
[—4/m; —4/7; —4/7; —4/7]
[4/m; 4/m; 4/7; 4/7]

Lower bound [l1,7; l2,7]
Upper bound [l1,7; l2,7]
Lower bound [cg; c7; cg; cg
Upper bound [cg; c7; cg; co

Step tolerance 10~ 12
Function tolerance 10-6
Optimality tolerance 10—14
Constraint tolerance 10—6

i9-7960X 16C CPU @ 2.80GHz. All the optimizations were
performed with the same settings for the CAD simulations,
the optimization algorithm, and the scaling factor SF,.

Two starting designs, base design and seed design, have
been used for the optimizations. Base design refers to the
original design from the manufacturer, in which the crank
moves 171° due to the small crank length of 27 mm. This
base design is located close to a feasibility border as the
crank length /; cannot be reduced much further while still
being able to displace the end effector to the predefined end
distance AZ. The pink-colored coupler /5 has a length equal
to 239 mm. In contrast, seed design is located further from
such an infeasible design as it has a longer crank [;, which is
equal to 28.5mm. Seed design also has a shorter pink-colored
coupler of 102 mm. For both starting designs, a 5-th degree
polynomial motion profile has been selected as a reference
for the geometry optimization. Strikingly, starting from base
design did not result in a fully optimal solution for the nested
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co-optimization. Starting from base design obtained a T,
saving of 46.2 % while the optimal solution achieves a T}, s
saving of 49.2 %.

Geometry optimization Nested co-optimization

1.06
G Bake degign O—Bade design
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% ®
1.02 e o 2 o o X
= E g 2% %23 :
2 150 Zu 8 150 ,
3 voia
- & 06
Szu/ design Seed design
100 0.98 100 ‘/ 0.58
d 095 seometr} 1 & Nisted2 o o
o L 5 2 o d g & 0.56
0’ 0.96 '/ s 2 9 5 o & ’
50 “97 “9% s0l 2 0.54

31 27 28 29 30 31
1 [mm]

27 29
11 [mm]

Fig. 5. The two plots are contour plots of the objective function of the
geometry optimization (left) and the nested co-optimization (right). A starting
design close to the feasibility border can be suboptimal for the nested co-
optimization.

The inability of the nested co-optimization to optimize the
design can be explained by examining the plots in Figure
5. Figure 5 shows the objective function of the geometry
optimization and nested co-optimization displayed as contour
plots. Noticeably, the shape of these objective functions is
massively affected by different motion profiles, as seen in
Figure 5. The usage of gradient-based optimization algorithms
implies that the algorithm searches for the minimum by search-
ing in the direction of the steepest descent of the objective
function. This implies that if the nested co-optimization is
initiated from base design, the search direction leads toward
infeasible designs characterized by a small [;. Due to this
search direction, the nested co-optimization is unable to find
the minimum, which is located at a smaller /5. In contrast,
the geometry optimization is able to find the minimum as
the search direction is away from the feasibility border and
towards the minimum indicated as ’Geometry 1 & 2°. As
indicated, base design is not a good starting point, therefore
the co-optimizations are performed starting from seed design,
the results are shown in Table II. In Figure 5, it is evident that
the solution for the nested approach starting from seed design,
denoted as ’Nested 2°, is located at the minimum. This is in
contrast to the solution resulting from initiating the nested
approach from base design, indicated by *Nested 1°.

Table II contains the optimized design parameters indicated
in bold and blue and their respective T}.,,,s and T}.,,,s saving
compared to base design. The time to obtain a solution is
denoted as t,; and the number of required samples is denoted
as Ng. In order to find the minimum, the sequential co-
optimization needed three iterations (3 it.). The three co-
optimization architectures are roughly able to find the optimal
design (shown in Figure 6) with a T.,,,s = 0.539 N'm. The co-
optimizations’ solution is significantly better than a separate
geometry or motion profile optimization (see Table II). This
emphasizes the importance of co-optimizing geometry and
motion profile. The optimal design, along with its associated

motor torque and motion profile, is presented in Figure 6,
showing both its start and end positions.

Optimal design

End
position

Optimal design
Seed design

Start
position

Motor torque

0 0.01 0.02 0.03 0.04
time [s]
Motion profile

&)
T

position [rad]

o

0.01 0.02 0.03 0.04
time [s]

Fig. 6. The optimal design achieved by the nested co-optimization in both
its start and end positions, along with the corresponding motor torque and
motion profile, is compared to that of seed design.

Seed design

— + —sequential (3 it.)
— 4- —nested
— 4 —simultaneous

Aade X RTYT

1000
Number of samples Ny

1500

Fig. 7. The number of samples are plotted with their corresponding T’y s
values, starting from seed design. Nested co-optimization is the fastest.

The major difference between the three co-optimizations lies
in their ability to converge, as shown in Table II. The nested
co-optimization reduced the computational time ts, with
74.4% compared to the simultaneous co-optimization, and
with 78.3% compared to the sequential co-optimization, due to
rapidly determining the optimal motion profile per geometry
by using the torque equation (5). The sequential approach
also uses the torque equation but the geometry is optimized
with a suboptimal motion profile, and vice versa, leading to a
longer solve time t,;. For the simultaneous co-optimization,
the torque equation is not a viable option, instead, it uses
CAD simulations as the objective function, which increases the
computational cost. Consequently, the same trend is seen for
the number of samples that is required (see Table II and Figure
7). The nested co-optimization required 213 samples, while the
simultaneous and sequential approach required respectively,
605 and 1335 samples.

VIII. CONCLUSION

This study proposes a comparison of energy-optimal co-
optimization architectures to obtain optimal link lengths and
motion profile for point-to-point mechanisms. The proposed
method is a nested co-optimization that determines the most
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TABLE II
RESULTS OF THE DIFFERENT OPTIMIZATIONS STARTING FROM seed design.

Optimization 11 1> Cg cr cs Ccg Trms Trms tsol Ns

method [mm] [mm] [1] [1] [1] [1] [Nm] saving [h] [1]
[%]

Base design 27.0 239 0 0 0 0 1.06 - - -
Geometry 28.7 | 86.0 0 0 0 0 0.949 10.6 3.57 215
Motion profile 28.5 102 | —2.18-107% | 353.-107% | 352-10°% | 3.34-10°3 | 0.587 | 383 | 11-107° | 544
Simultaneous 27.0 94 —1.11-103 | 1.32-10°4 250104 3.94-10"3 | 0.543 48.9 6.24 605
Nested 27.0 | 76.6 5.69-10—% 1.03-10°° | —2.60-10~% | 3.96-10-3 | 0.539 49.2 1.60 213
Sequential 3it) | 27.0 | 81.7 | 4.08-10~% | 548.10° 5 | —1.87-10-% | 3.94-10"3 | 0.539 | 49.2 7.39 1335

All values indicated in bold and blue are design parameters for the relevant optimization: e.g. X.XX.

optimal motion profile for every geometry, utilizing a torque
equation obtained from three CAD simulations. This co-
optimization method is compared to a conventional sequen-
tial iteration method and a simultaneous co-optimization. A
convergence analysis is performed on the polynomial degree
of the motion profile to ensure the co-optimizations are
efficient and accurate. Using CAD simulations enables the
co-optimization methods to be implemented on all mono-
actuated mechanisms. Five different optimizations were per-
formed on two different starting designs to thoroughly evaluate
the performance of the co-optimization methods. A starting
design close to the feasibility border causes problems for the
nested co-optimizations to find the optimum. Consequently,
a starting design further from the feasibility border enables
the nested co-optimization to find the optimum. The nested
co-optimization and the three sequential iterations resulted in
a T,,s saving of 49.2% compared to the base design. The
simultaneous co-optimization nearly reached a similar saving
of 48.9%. The major advantage of the proposed nested co-
optimization is the ability to converge rapidly, it delivers a time
saving of 74.4% compared to the simultaneous co-optimization
and a time saving of 78.3% compared to three sequential
iterations. The major time savings indicate the significance
of the proposed co-optimization architecture.
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