
Terrain-Blind Humanoid Walking on Rough Terrain
with Trajectory Optimization and Biarticular Springs

1st Mustafa Melih Pelit
Systems and Control Engineering

Tokyo Institute of Technology
Tokyo, Japan

pelit@ac.sc.e.titech.ac.jp

2nd Masaki Yamakita
Systems and Control Engineering

Tokyo Institute of Technology
Tokyo, Japan

yamakita@ac.sc.e.titech.ac.jp

Abstract—Trajectory optimization techniques to control biped
walkers are becoming popular with improvements in available
solvers. However, many of the proposed controllers assume that
the terrain is flat, causing the biped robot to easily fall when
the assumption doesn’t hold. Humans can easily walk on rough
terrain and there are a number of controllers that deal with
this issue through perception or sensing but necessary research
to tackle this issue without perception/sensing is still lacking. If
the walking controller can deal with terrain changes without per-
ception/sensing (terrain-blind), this would ease the computational
burden on the controller and decrease the problems caused by
errors in perception. This paper proposes a controller that can
track the optimized trajectories while handling moderate changes
in terrain height. This was mainly achieved by our phase variable
manipulation and utilization of a second optimized trajectory that
lands the robot safely. We have also improved the robustness of
the robot mechanically, by adding passive biarticular muscles.
Furthermore, we investigated the effect of biarticular muscle
parameters on robustness. Through simulation studies, we show
that our proposed controller with proper biarticular muscle
parameters can have a 5-link underactuated robot walk without
falling on terrains with up to 6.47 cm height changes.

Index Terms—legged robots, robot dynamics and control,
bipedal robots

I. INTRODUCTION

B IPEDAL movement is a great option for functional robots
since they could ideally operate in environments that

humans work in. For this reason, research in this area has
gathered a lot of interest. Human gait is efficient and very
robust but bipedal robots are yet to mimic this success. One
reason why bipedal robots have a hard time operating in real-
world environments is because of rough terrains such as gravel
roads, farming fields, forests etc. This is why in this paper,
we tried to improve the robustness of a 5-link underactuated
bipedal robot when it moves in unknown (blind walking) rough
terrain via the addition of passive biarticular muscles along
with our proposed controller based on optimized trajectories.

Trajectory optimization techniques are commonly used for
bipedal robots because they can provide optimal or locally op-
timal gaits to the chosen cost functions. They are increasingly
gaining interest due to the improvements in computational
power and commercially available solvers that can handle
constrained non-linear problems. In [1], non-linear program-
ming with basic splines was utilized to solve the trajectory

optimization problem of a biped robot with series elastic
actuators by assuming a fixed-base model. In [2], a library
of optimal trajectories were used to achieve speed tracking
in the 3D actuated robot ATRIAS. Optimization code used
to generate the trajectories that make up the gait library is
explained in [3] where they used direct transcription meth-
ods to utilize nonlinear programming solvers. In [4], direct
collocation methods were used to find an optimal trajectory
for a template model called spring-loaded inverted pendulum
model with swing legs. Then the reference trajectories from
the resulting template model was used to control a 5-link fully
actuated robot. Studies mentioned above show the effective-
ness of trajectory optimization methods in achieving bipedal
gait but they all assume the walking occurs on a flat surface
and the robustness of these methods are questionable.

One important factor of robustness for biped robots is
their ability to walk over uneven or rough terrain. There are
many proposed controllers that tackle the walking on known

Fig. 1. 5-link underactuated bipedal robot model where the inputs are
indicated with red arrows
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uneven terrain issue but the ability to overcome changes in
ground height without perceiving the environment is still an
open research problem. If a robot is able to walk on rough
terrain blindly, it would ease the burden on the controller
of handling this issue and reduce the problems caused by
inaccurate perception. In [5], a one step adaptation strategy
based on an actuated dual-SLIP template model was proposed,
so that humanoid robot can walk on rough terrain without
perceiving it for terrain variations of ±5 cm.

One way to tackle the robustness issue is to do it on a
mechanical level, namely by adding compliant elements. For
example in [6], they found that the series elastic compliance
has a stronger impact compared to the parallel one. Also, it is
indicated that a stiffer leg increases efficiency but reduces the
robustness. However, compliant elements are usually imple-
mented in monoarticular fashion or as series elastic actuation.
Monoarticular muscles are connected to two links and can
drive a single joint. On the other hand, biarticular muscles are
connected to two links separated by a third one and they can
drive two joints at the same time [7]. There are studies that
indicate the benefits of these under-studied biarticular muscles.

In [8], the important contributions of biarticular muscles
to trajectory control, stiffness control, and output control that
take place at the extremities were illustrated. In [9], it is shown
that the biarticular muscle mechanism they use in the robotic
leg contributes to improved force capacity in such a way that
the total output performance is maintained while individual
actuator requirements are reduced. It was shown in [10] that
biarticular muscles contribute to muscle coordination when
performing a jumping motion.

We showed in a previous study that walking efficiency,
walking speed and minimum input torque requirements can
be significantly improved by using passive biarticular muscles
[11]. This study was conducted using trajectory optimization
methods and it illustrated that different stiffness values were
needed for different optimization goals.

This paper focuses on terrain-blind walking based on op-
timized trajectories of a 5-link underactuated (point-footed)
biped robot equipped with biarticular muscles. The primary
contributions of this paper includes:

• Proposing a controller that can handle walking on a
terrain with random height variations using reference
trajectories without perception/sensing and validating it
on simulation experiments. We achieved this by using
different reference trajectories for walking and stepping-
down.

• Investigating the effects of passive biarticular muscles on
a bipedal robot’s ability to walk in rough terrain and how
different physical parameters of these biarticular springs
can effect the robustness.

This paper is organized as follows. Section II describes
the robot model. Section III describes the optimization setup
that was used to obtain the reference trajectories. Section IV
describes the proposed controller and in Section V we present
our results.

II. SYSTEMS AND MODELING

In this section, we will describe the 5-link underactuated
bipedal robot model used in this paper and our method of
generating random rough terrains.

A. Bipedal Walker with Biarticular Spring

The robot model and the notations that are used to describe
it can be seen in Fig. 1. This planar model consists of 5 links
representing the lower leg, the upper leg and the torso. Model
is underactuated and point-footed (no ankle torque). It has 2
actuators on the knees and 2 on the hip where the revolute
joints are positioned. Also, there are springs connected in a
biarticular configuration between the torso and the lower legs.

Equation of motion of this model can be written as:

M(q)q̈ + H(q, q̇) = Su + τ, (1)

where q = [θ1, θ2, θ3, θ4, θ5]T ∈ R5 are the generalized
coordinates, M(q) ∈ R5×5 is the inertia matrix, H(q, q̇) ∈ R5

is the Coriolis, centrifugal and gravitational terms vector,
S ∈ R5×4 is the distribution matrix of the inputs, u =
[u2, u3, u4, u5]T ∈ R4 are the input torques and τ ∈ R5

represents the torques generated by the biarticular springs. τ
can be expanded as:

τ = τst + τsw, (2)

where subscripts “st” and “sw” respectively represent the
“stance leg” which is the leg that is in contact with the ground
and the other leg called the “swing leg”.

We calculate the biarticular spring torques in the same
manner as [11] where the partial derivative of the potential
energy stored in the springs is taken with respect to the
generalized coordinates, resulting in:

τst =


0

−κ rk∆lst
0
0

−κ rh∆lst

 , τsw =


0
0

κ rh∆lsw
κ rk∆lsw
−κ rh∆lsw

 , (3)

where κ [N/m] is the biarticular spring stiffness, rh [m] and
rk [m] are the lever arm lengths with subscripts “h” and “k”
referring to “hip” and “knee”.

∆ln = rh(ϕn
h − ϕh0)− rk(ϕn

k − ϕk0), n ∈ {sw, st}, (4)

are the deflection of the respective spring. Terms related to
biarticular springs are indicated in Fig. 2.

We introduce the lever arm ratio r = rh/rk, and new spring
constant term κ̄ = κ r2k and deflection

∆l̄n =
∆ln
rk

, (5)

so that in Section III, we can search for r and κ̄ [Nm] instead
of the rh, rk and κ [N/m]. Equation (3) can be rewritten using
these new terms.
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Equation (1) models the single stance phase (when one foot
is on the ground and the other is doing the swinging motion).
When the swing foot contacts the ground (touch-down), an
impact occurs and model goes to a double stance phase where
both foot are on the ground. In this paper, we assume an
instantaneous double stance phase i.e. swing leg and stance
leg switch instantaneously at the moment of the impact and
after the impact, swing leg lifts up from the ground without
interaction (lift-off). The reset map is given by:

x+ = fH(x−). (6)

where x = [qT, q̇T]T. During this event, position of the robot
remains the same, only the swing leg and stance leg are
swapped but velocities change discontinuously [11].

In this paper, we also compare the performance of our model
with the default bipedal model (model without the biarticular
springs). Default model can be achieved by setting the spring
stiffness values to zero in Equation 1. Throughout this paper,
the surface is considered rigid with sufficient friction to allow
the movement.

B. Generating the rough terrain

We randomly generated rough terrains to test the perfor-
mance of the proposed controller. First, numbers between 0
and 1 were randomly generated for every 0.1 [m] interval of
the track length to generate a seed. Then the seed is multiplied
with δ ∈ [0 : 0.001 : 0.1 [m]] to set the maximum height of
the terrain where δ = 0 [m] is the flat terrain. Some sample
terrains generated this way can be seen in Fig 3. We linearly
interpolate for intermediary points in the terrain.

By increasing δ we can monotonically increase the difficulty
of a certain terrain seed. This means that the controller will be
able to handle the terrain with increasing δ. How the terrain
looks for different values of δ can be seen in Fig. 4.

III. OPTIMIZATION

In this section, we will describe the optimization setup that
was used in obtaining the reference trajectories for regular
walking and stepping-down motions using direct collocation
method [12]. These methods turn the continuous time problem
into discrete one which then can be handled by nonlinear

Fig. 2. Biarticular spring related variables

Fig. 3. Sample of randomly generated rough terrains (δ = 0.05 [m])

programming solvers. In this paper, OpenOCL [13] was used
to solve the trajectory optimization problem.

Optimization problem can be formulated as

min
x,u,p,T

∫ T

0

L(x(t),u(t),p)dt

s.t. ẋ = f(x(t),u(t),p)

r(x, t,p) ≤ 0,

(7)

where t ∈ [0, T ] is the time, x(t) is the state trajectory as de-
fined in Section II-A, u(t) are the inputs, p are the parameters,
L(x(t),u(t),p) is the path cost function, f(x(t),p) is the
system dynamics function (differential equation) and r(x, t,p)
are the constraint functions. The dynamic constraints and the
inequality constraints are realized on grid points (collocation
points). Number of the grid points was chosen as N = 24
and degree of interpolating polynomial as d = 3 for the
optimization.

We want to obtain two different trajectories for walking
on rough terrain. First one is called the “walking trajectory”
and this is the reference for our controller most of the time.
This would be the only trajectory needed if the gait was to
be performed on an even terrain. However, while walking on
uneven terrain and when the robot reaches the end of the pro-

Fig. 4. Effect of increasing δ on the terrain
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vided reference walking trajectory without managing to touch
the ground due to terrain roughness, we need an additional
reference trajectory to safely land the robot. To address this,
we will also generate a “stepping-down” trajectory. If the next
touch-down position is higher than the ground level, “walking
trajectory” can handle it to a certain degree.

The cost function for the walking and stepping-down tra-
jectories are identical and set to

L(x(t),u(t),p) = u(t)Tu(t). (8)

For the two trajectories, we need to determine a set of
constrains so that resulting trajectory is a human-like walking
gait. Some constraints for the two trajectories are different but
the common ones are:

• Constraining the relative knee joint angles to achieve
human-like gaits: 5◦ < θ2 < 22.5◦, 270◦ < θ4 < 345◦

• Upper body must remain straight: 80◦ < θ5 < 90◦

• The angular velocity of motors must not be over the
desired limit: |θ̇i| < 10 [rad/s], i ∈ {1, 2, 3, 4, 5}

• Center of mass of the robot should always be moving
with positive velocity in the x direction: ẋCoM(t) > 0
[m/s]

• Setting a lower bound for virtual stance leg angle α’s
velocity to keep it monotonically increasing (we set the
lower bound to 0.3 [rad/s] rather than to 0 [rad/s] in order
to have some safety margin in the case of blind walking
in rough terrain): α̇ > 0.3 [rad/s]

• The step length of the robot is set to be 0.25 [m]

Snap-shots from resulting walking and stepping-down tra-
jectories are shown in Fig. 5.

A. Walking Trajectory

The constraints for the walking trajectory are set as follows:

• Swing foot related constraints: ysw(0) = ysw(T ) = 0 [m],
ysw(0 < t < T ) > 0 [m], ẏsw(T ) < −0.2 [m/s],
ẋsw(T ) < 0 [m/s], ẋsw(t < T ) > 0 [m/s]

• The trajectory must be periodic: x(0) = fH(x(T )) (fH
is the reset map in Equation 6)

• Mechanical parameters of the biarticular springs were
constrained as: 0.01 ≤ r ≤ 5 and 0 [Nm] ≤ κ̄ ≤
2000 [Nm].

• Swing foot must avoid a virtual elliptic obstacle (prevents
foot dragging and keeps to swing leg from contacting the
ground early on rough terrains):(

xsw(t)− dobs

wobs

)2

+

(
ysw(t)

hobs

)2

≥ 1, (9)

where xsw and ysw are horizontal and vertical positions of
the swing foot, dobs = 0 [m] is the horizontal position of
the elliptic obstacle (from the stance foot), wobs = 0.2 [m]
and hobs = 0.05 [m] are the width and height of the
ellipse.

Optimization variables for this trajectory are x, ẋ, T , u, r
and κ̄.

B. Stepping-down Trajectory

The stepping-down trajectory takes over where the walking
trajectory left off at t = T and does a stepping down motion
while trying to keep the step length the same. The constraints
for the stepping-down trajectory are set as follows (terms
related to this trajectory are indicated withˆnotation):

• Stepping-down trajectory continues from the end point of
the walking trajectory: x̂(0) = x(T )

• Swing foot related constraints: −0.11 [m]≤ ŷsw(T̂ ) ≤
−0.1 [m], ˙̂ysw(T̂ ) < −0.2 [m/s], ˙̂xsw(T̂ ) < 0 [m/s]

This trajectory uses the same biarticular spring parameters
obtained in “walking trajectory” optimization and variables are
x̂, ˙̂x, T̂ , û. Here we set the step down height to be about 10
cm which can be adjusted depending on the task or terrain.

IV. CONTROL

In this section, we will introduce a controller that can handle
blind walking on uneven terrain using the reference trajectories
generated by direct collocation optimization. We will use
a feedback linearization scheme for trajectory tracking. The
model has 5 degrees of freedom but only 4 joints are controlled
(point-foot model) resulting in underactuation. Because of this,
we will formulate all the reference trajectories as a function

Fig. 5. Snap-shots of resulting walking trajectory and stepping-down trajectory where red links are the stance leg and blue links are the swing leg

281



of the virtual stance leg angle α as the phase variable (Fig. 1)
to stabilize the system. Phase variable based implementations
have been shown to be more robust compared to time based
ones [2].

In the optimization part, α was constrained to be monoton-
ically increasing. Reference trajectories are indicated by the
∗ term where θ∗i (α) is the reference joint angle and θ̇∗i (α)
is the reference angular velocity for the ith joint. Since direct
collocation just outputs the results at collocation points, we
linear interpolate for the in-between values.

The single stance phase ends when the swing foot contacts
the ground (touch-down) and begins when it ceases contact
with it (lift-off). In this paper, double stance phase is an
instantaneous event as mentioned in Section II.

Reference walking trajectory obtained in Section III is
defined in α ∈ [α∗(0),α∗(T )] where α∗(T ) is the virtual
stance leg angle at the end of the trajectory where swing foot
contacts the ground. Using a predefined trajectory for walking
on rough terrain is tricky because reference is defined for a
certain range of α. If the α is within the defined range in
the beginning of the single stance phase, reference walking
trajectory can be used without any modifications. However, the
single stance phase could begin with a lift-off virtual stance
leg angle that is out of the defined range (αLO < α∗(0) or
αLO > α∗(T )) because of the random ground height. For the
αLO < α∗(0) case, we use the modified α,

α̂ = α + aα + b

a =
α∗(0)− αLO

αLO − αmerge ,

b = −aαmerge

(10)

for obtaining reference trajectories θ∗i (α̂), θ̇∗i (α̂). This makes
sure α is in the defined range and linearly merges to the
original one at αmerge. αmerge was chosen as the middle
collocation point (k = 12). If αLO > α∗(T ) at the beginning
of the single stance phase, the gait is considered to have failed.

Another difficulty that can occur when walking on rough
terrain is when the robot reaches the end of the reference
walking trajectory but the expected touch-down condition
(ysw ≤ yground) is not satisfied (α > α∗(T )). This is when
the reference trajectory switches from “walking” to “stepping-
down” and just tries to reach the ground with the swing foot

TABLE I
5 LINK MODEL PARAMETERS

l1 = l4 : 0.48 [m] l2 = l3 : 0.48 [m] l5 : 0.48 [m]
m1 = m4 : 5 [kg] m2 = m3 : 5 [kg] m5 : 60 [kg]

Ii = mil
2
i /12 [kg · m2], i = 1, 2, 3, 4, 5

while keeping the same step-length (and satisfying the other
constraints).

A diagram of the controller can be seen in Fig. 6. The
reference trajectory generator sends the appropriate robot
configuration as the reference according to the current α. We
use feedback linearization to track actuated joint trajectories.
Inputs can be chosen as:

u = (TM−1S)−1(v + TM−1(H− τ)), (11)

to linearize the system given in Equation (1) where T ∈ R4×5

is the task space matrix that maps the generalized coordinates
to the actuated ones and

v = Kpy + Kdẏ, (12)

y =


θ∗2(α)− θ2
θ∗3(α)− θ3
θ∗4(α)− θ4
θ∗5(α)− θ5

 . (13)

Kp and Kd are the proportional and derivative gains and are
set to same values for each actuated joint.

V. RESULTS AND DISCUSSION

In this section, we will present the results when the trajecto-
ries obtained in Section III are used in the controller proposed
in Section IV on the robot model described in Section II, where
biarticular muscle parameters are set to those obtained by
direct collocation optimization. We also investigate the effects
of different biarticular muscle parameter combination’s effect
on robustness.

Simulations were performed in Matlab SIMULINK environ-
ment with variable step ode45 solver, max step size of 1e-3
and an absolute tolerance of 1e-8. The physical parameters of
the robot are provided in Table I.

Fig. 6. The controller diagram
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Fig. 7. Trajectory tracking results on flat terrain

A. Walking on flat terrain

Fig. 7 shows the proposed controller’s performance on a flat
terrain. We can see that tracking performance is quite good for
this under-actuated system. Gains were set to Kp = 9700 and
Kd = 220 for this simulation. As mentioned in Section III,
biarticular spring parameters were also optimized as they were
also set as optimization parameters. We set them to resulting
r = 1.8173 and κ̄ = 29.8220 [Nm] values for this gait.
Average velocity was 0.61 [m/s].

B. Walking on rough terrain

Now, we will present the performance of the controller when
the 5-link model is set to walk blindly (without any informa-
tion of the terrain height changes) on the randomly generated

Fig. 8. Snap-shots from walking on a rough terrain with δ = 0.05 [m]
(Biarticular muscles were not shown on this figure to reduce visual clutter)

Fig. 9. Trajectory tracking results on rough terrain with δ = 0.05 [m]

terrains described in Section II-B. Gains and the biarticular
spring parameters are kept the same as those mentioned in
Section V-A. Terrain difficulty was set to δ = 0.05 [m].

Fig. 8 shows some snap shots from this gait. Trajectory
tracking performance of the proposed controller can be seen
in Fig. 9. Trajectory tracking performance is still quite good
considering the unknown terrain height changes the robot has
to handle. It can be seen that the duration of a single step is not
constant anymore and depends on the terrain. Fig. 10 shows
the trajectory of the virtual stance leg angle during this gait. In
this figure, it is easier to see that the duration of a step is not
constant. Also, we can see that α can go out of the reference
trajectory bounds (shown by the dotted lines). When α goes
above the dotted line (α > α∗(T )), the controller switches the
reference to stepping-down trajectory and when α starts below
the dotted line, the modification described in Equation 10 is
triggered. Overall, we can see that the proposed controller can
handle walking on random rough terrain with good trajectory
tracking performance. Average velocity was 0.442 [m/s] for
this gait.

C. Effect of biarticular muscle parameters on rough terrain
walking

We wanted to see the effect of different biarticular spring
parameters on robustness, especially for the blind-walking on
rough terrain case. In our model, biarticular springs have two
parameters that can be adjusted: the lever arm ratio r and
spring constant κ̄.

Our metric of robustness is the maximum δ parameter the
robot can handle, i.e. δ̄. We introduced how the random rough
terrain was generated in Section II-B and terrain difficulty
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increased as δ parameter was increased. Fig. 11 shows the
resulting δ̄ values in a 3D plot for combinations of r =
[1, 1.2, 1.4, ..., 5] and κ̄ = [0, 5, 10, 15, ..., 200] [Nm]. For each
combination, we start with δ = 0 (flat terrain) and run the
walking simulation. If the robot is successful at walking in
the terrain for 10 seconds without falling, it is considered a
successful walk and we increase δ by 0.001 [m] and run the
simulation again. We do this until the robot can’t handle the
terrain difficulty anymore and the maximum δ value it can
handle is recorded as δ̄ and is shown in the figure. Fig. 11
is the average result of simulation experiments in 10 different
random terrain (4 of them are shown in Fig. 3).

In Fig. 11, κ̄ = 0 corresponds to a model without biarticular
springs (we call this the default model) where τ = 0 in
Equation (1). We can see that by adding biarticular springs, the
robot can handle rougher terrains for some spring parameter
combinations. The maximum terrain roughness that the default
model could handle was δ = 0.0449 [m]. It can be seen that
there are a lot of r and κ̄ combinations that can surpass this
value and make the system more robust for blind-walking
on rough terrain. The maximum value was reached with a
parameter combination of r = 2.2, κ̄ = 105 [Nm], the robot
was able to handle a terrain with δ = 0.0647 [m] which is
a 44.098% increase compared to the default model. Fig. 12
shows the same results for fixed r values in a 2D plot which
is a bit more easier to read.

These are the average values for walking on different ran-
dom terrains. For one of the terrains, robot was able to increase
its δ̄ value from 0.0500 [m] for the default model to 0.0960
[m] by using biarticular muscles with r = 2, κ̄ = 130 [Nm]
which is a 92% increase. The smallest maximum increase for
a single terrain was from δ̄ = 0.0500 [m] for the default
model to δ̄ = 0.083 [m] for the model with biarticular muscles
which is a 66% increase. We can see that adding biarticular
springs always ended up increasing the robustness for different
random terrain. The reason for values for single terrains being
larger than the average value is that different biarticular spring
parameter settings perform better for different terrain.

However, we can also see that for larger r and κ̄ values,

Fig. 10. Virtual stance leg angle α when walking on rough terrain with
δ = 0.05 [m]. The dotted lines show the upper and lower limits of the
reference walking trajectory α∗ ∈ [α∗(0),α∗(T )]

Fig. 11. Effects of different biarticular spring parameter combinations on
robustness to terrain difficulty. Vertical axis shows δ̄ which is the maximum
terrain difficulty the model with indicated parameter combination can handle.
Larger δ̄ means it is more robust.

the robot can’t even walk on even terrain (shown by the dark
blue region in Fig. 11). This is because the biarticular muscles
generate large torques that actuators can’t handle(there is a ±
200 [Nm] torque limit on the actuators).

We have also investigated the efficiency of walking for
different biarticular spring parameters that was used in this
paper. Specific resistance (SR) [14]

SR :=
p

Mgv
, p =

1

T

∫ T

0

5∑
i=2

|uiωi|dx, (14)

was chosen as the efficiency indicator where T [secs] is the
end time of one step, M [kg] is the total weight of the robot,
g [m/s2] is the gravitational term, v [m/s] is the average
speed and p [J/s] is the average input energy. A smaller
SR value means that the gait is more energy-efficient. When

Fig. 12. This figure shows the same results presented in Fig. 11 but for fixed
r values
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walking on flat ground, SR = 0.2731 for the default model
(κ̄ = 0), SR = 0.1818 for the BA model with spring
parameters obtained from the optimization (κ̄ = 29.8220
[Nm], r = 1.8173) and SR = 0.6449 for the BA model
with most robust spring parameters (κ̄ = 105 [Nm], r = 2.2)
values were obtained. This shows that for different criterion,
best pair of parameters are different. Biarticular muscles can
increase the efficiency as shown in [11] but if we want to make
the robot more robust, some efficiency must be sacrificed.
Best way would be to adjust the parameters according to the
environment and the task. For example, κ̄ can be changed by
introducing a stiffness adjustment mechanism as in [15] and
r can be adjusted by a variable radius mechanism as in [16].

VI. CONCLUSIONS

In this paper, we proposed a controller that can use op-
timized trajectories to traverse through rough terrain with-
out perception/sensing. To achieve this, we used a reference
stepping-down trajectory in addition to the reference walking
trajectory and also by modifying the phase variable (α) of the
reference trajectories when necessary. We also showed how
we have obtained these trajectories using direct collocation
trajectory optimization. Through simulation experiments, it
was shown that a 5-link underactuated biped robot model was
able to handle random rough terrain with height changes up
to 4.49 cm on average.

Using this controller, we also investigated the effects of
passive biarticular muscles on robustness. It was shown that
adding biarticular springs can significantly increase the per-
formance for terrain-blind walking on rough terrain. Model
with biarticular muscles was able to handle a terrain with 6.47
cm height change on average which is a significant increase
compared to the default model. We also investigated how
different biarticular spring parameters effect the robustness and
found that adding biarticular muscles increased the robustness
unless a really stiff spring was chosen or lever arm ratio was
set too high. Our study shows that a spring constant of κ̄ = 105
[Nm] and lever arm ratio of r = 2.2 gave the best performance.

This study showed that biarticular springs in combination
with our proposed controller can handle terrain-blind walk-
ing. Being able to handle terrain variations without percep-
tion/sensing would truly ease the burden on the high level
controller, computation times would decrease and failures due
to errors in perception could be mitigated.

As a follow-up to this work, we would like to achieve a
velocity tracking scheme with our controller and work on
improving the robustness. In [17], we showed that having
variable stiffness on a SLIP model can significantly increase
the robustness against external pushes. Now with this paper,
we showed that different biarticular muscle parameters may
fare better for different terrain and parameters that provide
better robustness do not necessarily provide the best walking
efficiency. Also in another future study, we would like to
see if we can further improve the overall robustness and
efficiency by having variable stiffness biarticular muscles and

adjustable lever-arm ratio via an adjustment mechanism and
an accompanying controller.
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