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Abstract—The end-to-end paradigm has gained considerable
attention in the field of autonomous driving due to its anticipated
performance. However, prevailing end-to-end paradigms predom-
inantly employ one-shot training using imitation learning, result-
ing in models lacking evolutionary capabilities and struggling to
adapt to long-tail scenarios. Furthermore, addressing these long-
tail scenarios necessitates end-to-end models to simultaneously
exhibit the generalizability of environmental representations
and the robustness of control policies. Therefore, this paper
proposes an end-to-end autonomous driving model called GPCT,
using a Generative Perception network and a Continuous-Time
brain neural network, with a Policy-Reward-Data-Aggregation
(PRDA) mechanism. Specifically, the generative perception net-
work extracts two-dimensional and three-dimensional perceptual
information from monocular camera inputs and undergoes dis-
tribution fitting and sampling to obtain environmental dynamics
information. Subsequently, the sequential temporal environmen-
tal dynamics information is fed into continuous-time brain neural
networks to output the control information. The end-to-end
model is then applied to on-policy scenarios using the PRDA
mechanism to collect data for further training and evolution.
Data is collected within the Carla simulator, followed by model
training, and the utilization of a multi-round PRDA mechanism
for data collection and training to facilitate model evolution.
The algorithm’s performance improves by 63.85% after five
evolution experiments. In the transfer experiments, the proposed
algorithm achieves a route completion rate close to 100% and
maintains a driving score of around 60%, even surpassing the
performance of systems equipped with multiple cameras and
LiDAR. Furthermore, under heavy fog conditions, the route
completion rate remains at 85%, showcasing generalizability and
robustness.

Index Terms—End-to-end autonomous driving, continuous-
time neural networks, evolutionary method, generative model

I. INTRODUCTION

With the rapid advancement of artificial intelligence tech-
nology, the emergence of end-to-end autonomous driving (AD)
has provided a new perspective for AD technology, becoming
one of the mainstream research directions in the field [1].
In contrast to classical modular AD approaches that divide
the AD task into perception, prediction, planning, control, etc.
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[2]-[4], the end-to-end paradigm models the entire AD task
as a differentiable model, which overcomes drawbacks of the
classical modular paradigm, such as error accumulation and
metric dissociation.

In recent years, end-to-end AD has rapidly advanced, at-
tracting increasing scholarly engagement and leading to the
publication of a series of outstanding articles. Represented by
UniAD [5], a group of end-to-end AD methods [6], [7] adopts
an open-loop approach for training and validation on the
nuScences dataset [8], while another group [9]-[11] employs a
closed-loop approach, collecting data and conducting training
and validation in the Carla simulator [12]. These methods
mostly utilize multi-dimensional sensor inputs (GNSS, cam-
eras, LiDAR, etc.), output planning or control commands, and
accomplish end-to-end AD tasks through imitation learning.

The tasks of AD involve a plethora of long-tail scenarios,
greatly impeding the large-scale deployment and application
of the AD industry, this necessitates that end-to-end AD
algorithms possess both generalizability and evolutionary ca-
pabilities.

To meet the generalizability requirements of AD tasks,
end-to-end AD algorithms need to simultaneously satisfy
the generalizability of environmental representations and the
robustness of control policies. Humans generate robust move-
ments and reach final goals by observing environmental
geometric features and dynamic information through their
eyes and interacting to evaluate them. Mimicking the human
perception-control process is a feasible approach for end-
to-end algorithm design. However, most current end-to-end
models output control actions directly using linear networks
to map features, lacking neural basis. Lechner et al. [13]
draw inspiration from the neural system of nematodes in
the perception-to-control process to establish Neural Circuit
Policies (NCPs), a brain-like neural network controller that
employs continuous-time differential equations for modeling.
In terms of generalizability, interpretability, and robustness,
this controller outperforms linear models [14]. Therefore, this
paper proposes to construct an end-to-end AD model using a
Generative Perception network and a Continuous-Time brain
neural network.

On the other hand, most imitation learning methods lack
evolutionary capabilities and can only employ one-shot train-
ing, especially for open-loop methods using real datasets.
These open-loop methods cannot redeploy the trained model
to re-collect interactive data for further model training and
upgrading. However, conducting experiments in the Carla sim-
ulator precisely meets this requirement. Due to the existence



