IR-VIO: Illumination-Robust Visual-Inertial Odometry Based on Adaptive Weighting Algorithm With Two-Layer Confidence Maximization

Zhixing Song, Xuebo Zhang, Senior Member, IEEE, Tianyi Li, Shiyong Zhang, Youwei Wang, and Jing Yuan, Member, IEEE

Abstract

Illumination change, image blur, and fast motion dramatically decrease the performance of visual-inertial navigation systems (VINS). This paper presents a new illumination-robust visual-inertial odometry (IR-VIO) based on adaptive weighting algorithm with two-layer confidence maximization. First, to prevent the VIO performance degradation caused by poor image quality in complex scenes and ignoring the confidence differences of feature points, we develop a novel adaptive weighting algorithm on the multi-sensor layer and visual feature layer to better fuse multi-sensor information and maximize the overall confidence of VIO. Second, to solve the problems of image feature tracking difficulty and excessive image noise in illumination-changing scenes, an image enhancement algorithm is introduced to enhance consecutive images to the same brightness level, while a block noise removal algorithm with constraint protection mechanism is proposed to dynamically remove noise points. Finally, experimental results on the public dataset and real-world environments demonstrate that IR-VIO has superior performance in terms of accuracy and robustness compared with the state-of-the-art methods. Supplementary video is available at https://youtu.be/h9rmszxYHEk.