ICRA 2012 Paper Abstract

Close

Paper WeD03.4

Zhang, Yu (Tony) (University of Tennessee), Parker, Lynne (University of Tennessee)

Task Allocation with Executable Coalitions in Multirobot Tasks

Scheduled for presentation during the Regular Session "Modular Robots & Multi-Agent Systems" (WeD03), Wednesday, May 16, 2012, 17:15−17:30, Meeting Room 3 (Mak'to)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on October 24, 2017

Keywords Distributed Robot Systems

Abstract

In our prior work, we proposed the IQ-ASyMTRe architecture with a measure of information quality to reason about forming coalitions in multirobot tasks. The formed coalitions are guaranteed to be executable, given the current configurations of the robots and environment. A cost and a quality measure are associated with each coalition to further determine its utility for the task. In this paper, we show that IQ-ASyMTRe-like architectures can be utilized to significantly reduce the overall complexity of task allocation by considering only executable coalitions. For implementation, we apply a layering technique such that most existing methods for task allocation can be easily incorporated. Furthermore, we introduce a general process to address situations in which no executable coalitions are available for certain tasks, and integrate it with IQ-ASyMTRe to achieve more autonomy. Such an approach is able to autonomously decompose unsatisfied preconditions of the required task behaviors into satisfiable components, in order to generate partial order plans for them accordingly. We show how this process can be implemented using a market-based approach. Simulation results are provided to demonstrate these techniques.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2017 PaperCept, Inc.
Page generated 2017-10-24  00:36:24 PST  Terms of use