ICRA 2012 Paper Abstract

Close

Paper TuC08.4

Kirchner, Nathan (University of Technology), Alempijevic, Alen (University of Technology Sydney (FEIT)), Virgona, Alexander Joseph (University of Technology, Sydney)

Head-To-Shoulder Signature for Person Recognition

Scheduled for presentation during the Regular Session "Human Detection and Tracking" (TuC08), Tuesday, May 15, 2012, 15:15−15:30, Meeting Room 8 (Wacipi)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on October 15, 2018

Keywords Human Detection & Tracking, Recognition, Domestic Robots

Abstract

Ensuring that an interaction is initiated with a particular and unsuspecting member of a group is a complex task. As a first step the robot must effectively, expediently and reliably recognise the humans as they carry on with their typical behaviours (in situ). A method for constructing a scale and viewing angle robust feature vector (from analysing a 3D pointcloud) designed to encapsulate the inter-person variations in the size and shape of the people's head to shoulder region (Head-to-shoulder signature - HSS) is presented. Furthermore, a method for utilising said feature vector as the basis of person recognition via a Support-Vector Machine is detailed. An empirical study was performed in which person recognition was attempted on in situ data collected from 25 participants over 5 days in a office environment. The results report a mean accuracy over the 5 days of 78.15% and a peak accuracy 100% for 9 participants. Further, the results show a considerably better-than-random (1/23 = 4.5%) result for when the participants were: in motion and unaware they were being scanned (52.11%), in motion and face directly away from the sensor (36.04%), and post variations in their general appearance. Finally, the results show the HSS has considerable ability to accommodate for a person's head, shoulder and body rotation relative to the sensor - even in cases where the person is faced directly away from the robot.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2018 PaperCept, Inc.
Page generated 2018-10-15  14:17:33 PST  Terms of use