ICRA 2012 Paper Abstract

Close

Paper TuC02.4

Hornung, Armin (University of Freiburg), Bennewitz, Maren (University of Freiburg)

Adaptive Level-of-Detail Planning for Efficient Humanoid Navigation

Scheduled for presentation during the Regular Session "Planning and Navigation of Biped Walking" (TuC02), Tuesday, May 15, 2012, 15:15−15:30, Meeting Room 2 (Chief Red Wing)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on October 15, 2018

Keywords Humanoid Robots

Abstract

In this paper, we consider the problem of efficient path planning for humanoid robots by combining grid-based 2D planning with footstep planning. In this way, we exploit the advantages of both frameworks, namely fast planning on grids and the ability to find solutions in situations where grid-based planning fails. Our method computes a global solution by adaptively switching between fast grid-based planning in open spaces and footstep planning in the vicinity of obstacles. To decide which planning framework to use, our approach classifies the environment into regions of different complexity with respect to the traversability. Experiments carried out in a simulated office environment and with a Nao humanoid show that (i) our approach significantly reduces the planning time compared to pure footstep planning and (ii) the resulting plans are almost as good as globally computed optimal footstep paths.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2018 PaperCept, Inc.
Page generated 2018-10-15  14:59:21 PST  Terms of use