ICRA 2012 Paper Abstract

Close

Paper WeB02.1

Asano, Fumihiko (Japan Advanced Institute of Science and Technology), Kawamoto, Junji (Japan Advanced Institute of Science and Technology)

Passive Dynamic Walking of Viscoelastic-Legged Rimless Wheel

Scheduled for presentation during the Regular Session "Hybrid Legged Robots" (WeB02), Wednesday, May 16, 2012, 10:30−10:45, Meeting Room 2 (Chief Red Wing)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on October 19, 2017

Keywords Passive Walking, Underactuated Robots, Multi-legged Robots

Abstract

imit cycle walking including passive-dynamic walkers is mathematically modeled as a nonlinear hybrid dynamical system with state jumps in general. The generated motion is natural and energy efficient, but it is still pointed out that there are many differences between limit cycle walking and human walking. Non-existence of the period of double-limb support in the former comes from the assumption of instantaneous inelastic collision and is one of the biggest differences from the latter. In human walking, the period of double-limb support accounts for more than 10% of one cycle, and this must have significant effects on the gait stability and efficiency. Also in robot walking, utilizing the effects of double-limb support is essential to achieve more flexible, adaptive and human-like behavior. This paper then develops a novel mathematical model of a passive rimless wheel that emerges double-limb support by using the leg viscoelasticity, and numerically investigates the fundamental properties.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2017 PaperCept, Inc.
Page generated 2017-10-19  00:03:21 PST  Terms of use