ICRA 2012 Paper Abstract

Close

Paper TuD08.6

Biswas, Joydeep (Carnegie Mellon University), Veloso, Manuela (Carnegie Mellon University)

Depth Camera Based Indoor Mobile Robot Localization and Navigation

Scheduled for presentation during the Regular Session "RGB-D Localization and Mapping" (TuD08), Tuesday, May 15, 2012, 17:45−18:00, Meeting Room 8 (Wacipi)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on December 11, 2017

Keywords Localization

Abstract

The sheer volume of data generated by depth cameras provides a challenge to process in real time, in particular when used for indoor mobile robot localization and navigation. We introduce the Fast Sampling Plane Filtering (FSPF) algorithm to reduce the volume of the 3D point cloud by sampling points from the depth image, and classifying local grouped sets of points as belonging to planes in 3D (the "plane filtered" points) or points that do not correspond to planes within a specified error margin (the "outlier" points). We then introduce a localization algorithm based on an observation model that down-projects the plane filtered points on to 2D, and assigns correspondences for each point to lines in the 2D map. The full sampled point cloud (consisting of both plane filtered as well as outlier points) is processed for obstacle avoidance for autonomous navigation. All our algorithms process only the depth information, and do not require additional RGB data. The FSPF, localization and obstacle avoidance algorithms run in real time at full camera frame rates(30Hz) with low CPU requirements(16%). We provide experimental results demonstrating the effectiveness of our approach for indoor mobile robot localization and navigation. We further compare the accuracy and robustness in localization using depth cameras with FSPF vs. alternative approaches that simulate laser rangefinder scans from the 3D data.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2017 PaperCept, Inc.
Page generated 2017-12-11  16:44:38 PST  Terms of use