ICRA 2012 Paper Abstract


Paper WeD210.4

Liu, Yang (University of Alberta), Zhang, Hong (University of Alberta)

Indexing Visual Features: Real-Time Loop Closure Detection Using a Tree Structure

Scheduled for presentation during the Interactive Session "Interactive Session WeD-2" (WeD210), Wednesday, May 16, 2012, 17:00−17:30, Ballroom D

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on June 20, 2018

Keywords SLAM, Visual Navigation, Computer Vision for Robotics and Automation


We propose a simple and effective method for visual loop closure detection in appearance-based robot SLAM. Unlike the Bag-of-Words (BoW hereafter) approach in most existing work of the problem, our method uses direct feature matching to detect loop closures and therefore avoid the perceptual aliasing problem caused by the vector quantization process of BoW. We show that a tree structure can be efficient in online loop closure detection. In our method, a KD-tree is built over all the key frame features and an indexing table is kept for retrieving relevant key frames. Due to the efficiency of the tree-based feature matching, loop closure detection can be achieved in real-time. To investigate the scalability of the method, we also apply the scale dependent feature selection in our method and show that the run time can be reduced significantly at the expense of sacrificing the performance to some extent. The proposed method is validated on an indoor SLAM dataset with 7,420 images.



Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2018 PaperCept, Inc.
Page generated 2018-06-20  23:48:12 PST  Terms of use