ICRA 2012 Paper Abstract

Close

Paper WeB02.4

Jun, Jae Yun (Florida State University), Clark, Jonathan (Florida State University)

A Reduced-Order Dynamical Model for Running with Curved Legs

Scheduled for presentation during the Regular Session "Hybrid Legged Robots" (WeB02), Wednesday, May 16, 2012, 11:15−11:30, Meeting Room 2 (Chief Red Wing)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on February 24, 2018

Keywords Multi-legged Robots, Biologically-Inspired Robots, Humanoid and Bipedal Locomotion

Abstract

Some of the unique properties associated with running with curved legs or feet (as opposed to point-contact feet) are examined in this work, including the rolling contact motion, the change of the leg's effective stiffness and rest length, the shift of the effective flexion point along the leg, and the compliant-vaulting motions over its tiptoe during stance. To examine these factors, a novel torque-driven reduced-order dynamical model with a clock-based control scheme and with a simple motor model is developed (named as torque-driven and damped half-circle-leg model (TD-HCL)). The controller parameters are optimized for running efficiency and forward speed using a direct search method, and the results are compared to those of other existing dynamical models such as the torque-driven and damped spring-loaded-inverted-pendulum (TD-SLIP) model, the torque-driven and damped two-segment-leg (TD-TSL) model, and the TD-SLIP with a rolling foot (TD-SLIP-RF) model. The results show that running with rolling is more efficient and more stable than running with legs that involve pin joint contact model. This work begins to explain why autonomous robots using curved legs run efficiently and robustly. New curved legs are designed and manufactured in order to validate these results.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2018 PaperCept, Inc.
Page generated 2018-02-24  06:14:18 PST  Terms of use