ICRA 2012 Paper Abstract

Close

Paper WeA02.4

Valenzuela, Andrés (Massachusetts Institute of Technology), Kim, Sangbae (Massachusetts Institute of Technology)

Optimally Scaled Hip-Force Planning: A Control Approach for Quadrupedal Running

Scheduled for presentation during the Regular Session "Multi-Legged Robots" (WeA02), Wednesday, May 16, 2012, 09:15−09:30, Meeting Room 2 (Chief Red Wing)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on October 24, 2017

Keywords Multi-legged Robots, Motion and Path Planning, Biologically-Inspired Robots

Abstract

This paper presents Optimally Scaled Hip-Force Planning (OSHP), a novel approach to controlling the body dynamics of running robots. Controllers based on OSHP form the high-level component of a hierarchical control scheme in which they direct lower level controllers, each responsible for coordinating the motion of a single leg. An OSHP controller takes in the state of the runner at the apex of its primary aerial phase and returns desired profiles for the vertical and horizontal forces to be exerted at each hip during the subsequent stride. The hip force profiles returned by OSHP are scaled variants of nominal force profiles based on biological ground reaction force data. The OSHP controller determines the scaling parameters for these profiles through constrained nonlinear optimization on an approximate model of the runner's body dynamics. Evaluation of an OSHP controller for a quadruped model in simulation shows that even with very simple leg controllers, the OSHP controller can accelerate the runner from rest to steady-state running without a pre-defined footfall sequence.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2017 PaperCept, Inc.
Page generated 2017-10-24  00:26:22 PST  Terms of use