ICRA 2012 Paper Abstract


Paper TuD01.2

Ananthanarayanan, Arvind (MA INST OF TECH), Foong, Shaohui (Singapore University of Technology and Design), Kim, Sangbae (Massachusetts Institute of Technology)

A Compact Two DOF Magneto-Elastomeric Force Sensor for a Running Quadruped

Scheduled for presentation during the Regular Session "Force & Tactile Sensors" (TuD01), Tuesday, May 15, 2012, 16:45−17:00, Meeting Room 1 (Mini-sota)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on February 23, 2018

Keywords Force and Tactile Sensing, Biologically-Inspired Robots


This paper presents a novel design approach for a two-DOF foot force sensor for a high speed running quadruped. The adopted approach harnesses the deformation property of an elastomeric material to relate applied force to measurable deformation. A lightweight, robust and compact magnetic-field based sensing system, consisting of an assembly of miniature hall-effect sensors, is employed to infer the positional information of a magnet embedded in the elastomeric material. Instead of solving two non-linear models (magnetic field and elastomeric) sequentially, a direct approach of using artificial neural networks (ANN) is utilized to relate magnetic flux density (MFD) measurements to applied forces. The force sensor, which weighs a only 24.5 gms, provides a measurement range of 0 - 1000 N normal to the ground and up to $pm$ 125N parallel to the ground. The mean force measurement accuracy was found to be within 7% of the applied forces. The sensor designed as part of this work finds direct applications in ground reaction force sensing for a running quadrupedal robot.



Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2018 PaperCept, Inc.
Page generated 2018-02-23  15:59:06 PST  Terms of use