ICRA 2012 Paper Abstract

Close

Paper TuD310.4

Bergerman, Marcel (Carnegie Mellon University), Singh, Sanjiv (Carnegie Mellon University), Hamner, Brad (Carnegie Mellon University)

Results with Autonomous Vehicles Operating in Specialty Crops

Scheduled for presentation during the Interactive Session "Interactive Session TuD-3" (TuD310), Tuesday, May 15, 2012, 17:30−18:00, Ballroom D

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on February 21, 2018

Keywords Robotics in Agriculture and Forestry, Field Robots, Autonomous Navigation

Abstract

Specialty crops constitute a $45 billion/year industry. As opposed to crops such as wheat, cotton, corn and soybean, they are characterized by the need for intensive cultivation. Specialty crops growers currently face serious labor cost and availability problems, and few technological solutions exist to increase their efficiency given the past history of abundant supply of low-cost labor. This leads to an opportunity to use recent technological advances to not only increase efficiency and reduce labor costs in specialty crops production but also to support a domestic engineering solutions industry for specialty crops.

We envision a family of reconfigurable vehicles that can be rapidly tasked to automate or augment pruning, thinning, harvesting, mowing, spraying, etc. They would share a common sensing and computing infrastructure, allowing applications created for one to be easily transferable to others—much like software applications today are transferable from one computer to another. In this paper we describe our work over the last three years designing and deploying a family of such vehicles, the Autonomous Prime Movers (APMs). The five vehicles completed so far have traveled autonomously over 300 km in research and commercial tree fruit orchards; preliminary results in time trials conducted by extension educators indicate efficiency gains of up to 58%.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2018 PaperCept, Inc.
Page generated 2018-02-21  19:17:35 PST  Terms of use