ICRA 2012 Paper Abstract

Close

Paper WeD05.2

Mahoney, Arthur (University of Utah), Cowan, Daniel Lewis (University of Utah), Miller, Katie (University of Utah), Abbott, Jake (University of Utah)

Control of Untethered Magnetically Actuated Tools Using a Rotating Permanent Magnet in Any Position

Scheduled for presentation during the Regular Session "Minimally Invasive Interventions II" (WeD05), Wednesday, May 16, 2012, 16:45−17:00, Meeting Room 5 (Ska)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on November 18, 2017

Keywords Medical Robots and Systems, Micro/Nano Robots

Abstract

It has been shown that when a magnetic dipole, such as a permanent magnet, is rotated around a fixed axis such that the dipole is perpendicular to the axis of rotation, the magnetic field vector at every point in space also rotates around a fixed axis. In this paper, we reformulate this phenomenon using linear algebraic techniques, which enables us to find the necessary dipole rotation axis to make the magnetic field at any desired point in space rotate about any desired axis. To date, untethered magnetically actuated tools (e.g., capsule endoscopes, rolling spheres, and helical-propeller microswimmers) controlled with a single rotating permanent magnet have been constrained to operate in positions where the rotating field behavior is simple and easy to visualize. We experimentally demonstrate that the results of this paper can be used to control a variety of untethered, rotating magnetic devices in any position even while the rotating permanent magnet follows trajectories independent of the devices themselves. This method constitutes a substantial step toward making a great deal of prior laboratory research regarding rotating magnetic microrobots and capsule endoscopes clinically feasible.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2017 PaperCept, Inc.
Page generated 2017-11-18  19:13:01 PST  Terms of use