ICRA 2012 Paper Abstract

Close

Paper TuC06.3

von der Emde, Gerhard (University of Bonn), Gebhardt, Kristina (University of Bonn), Behr, Katharina (University of Bonn)

Non-Visual Orientation and Communication by Fishes Using Electrical Fields: A Model System for Underwater Robotics

Scheduled for presentation during the Invited Session "Biologically Inspired Robotics" (TuC06), Tuesday, May 15, 2012, 15:00−15:15, Meeting Room 6 (Oya'te)

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012, RiverCentre, Saint Paul, Minnesota, USA

This information is tentative and subject to change. Compiled on December 11, 2017

Keywords Biomimetics, Recognition

Abstract

Building autonomous underwater robots is a challenging problem. Different sensory modalities have been employed successfully, some inspired by human and animal senses. The European ANGELS project uses an electric sense inspired by weakly electric fish. These fish have the unique ability to navigate and orient in complete darkness by using self-produced electrical fields. They emit electric signals into the environment, which in turn they perceive with an array of electroreceptor organs in their skin. The fish's whole body serves as an antenna, which shapes the emitted electrical field. As a result, the animals are able to detect, localize and analyze objects in their vicinity and to perceive a 3-dimensional electrical picture of their surroundings. Here, we review biological experimental results highlighting the animal's perceptual abilities, which allow them to navigate in extreme environments where vision can not be used. In addition, electric fishes use electric signals for communication. Behavioral communication strategies such as synchronization of electric signals and fixed-order-signaling can play a role in group coherence. Because of their unique sensory abilities, electric fish can serve as a model system for roboticists building underwater vehicles that can communicate and navigate in extreme environments where vision is not possible. In ANGELS, the electric sense is used to navigate a robot without knowledge of the surroundings, keep multi robots in formation, reco

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2017 PaperCept, Inc.
Page generated 2017-12-11  16:47:11 PST  Terms of use