ICRA 2011 Paper Abstract

Close

Paper WeP205.4

BAZEILLE, Stephane (ENSTA ParisTech), Filliat, David (ENSTA ParisTech)

Incremental Topo-Metric SLAM Using Vision and Robot Odometry

Scheduled for presentation during the Regular Sessions "SLAM IV" (WeP205), Wednesday, May 11, 2011, 16:10−16:25, Room 3G

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on December 8, 2019

Keywords SLAM, Visual Navigation, Wheeled Robots

Abstract

We address the problem of simultaneous localization and mapping by combining visual loop-closure detection with metrical information given by the robot odometry. The proposed algorithm builds in real-time topo-metric maps of an unknown environment, with a monocular or omnidirectional camera and odometry gathered by motors encoders. A dedicated improved version of our previous work on purely appearance-based loop-closure detection is used to extract potential loop-closure locations. Potential locations are then verified and classified using a new validation stage. The main contributions we bring are the generalization of the validation method for the use of monocular and omnidirectional camera with the removal of the camera calibration stage, the inclusion of an odometry-based evolution model in the Bayesian filter which improves accuracy and responsiveness, and the addition of a consistent metric position estimation. This new SLAM method does not require any calibration or learning stage (i.e. no a priori information about environment). It is therefore fully incremental and generates maps usable for global localization and planned navigation. This algorithm is moreover well suited for remote processing and can be used on toy robots with very small computational power.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2019 PaperCept, Inc.
Page generated 2019-12-08  02:09:41 PST  Terms of use