ICRA 2011 Paper Abstract

Close

Paper TuP107.1

Wang, Dong-hai (Zhejiang University), Guo, Jiajie (Georgia Institute of Technology), Lee, Kok-Meng (Georgia Institute of Technology), Yang, Can-Jun (Zhejiang Univ.,China), Yu, Hui (Zhejiang University)

An Adaptive Knee Joint Exoskeleton Based on Biological Geometries

Scheduled for presentation during the Regular Sessions "Biologically-Inspired Robots III" (TuP107), Tuesday, May 10, 2011, 13:40−13:55, Room 5B

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on March 30, 2020

Keywords Biologically-Inspired Robots, Rehabilitation Robotics

Abstract

This paper presents a dynamic model of a knee joint interacting with a two-link exoskeleton for investigating the effects of different exoskeleton designs on internal joint forces. The closed kinematic chain of the leg and exoskeleton has a significant effect on the joint forces in the knee. A bio-joint model is used to capture this effect by relaxing a commonly made assumption that approximates a knee joint as a perfect engineering pin-joint in exoskeleton design. Based on the knowledge of a knee-joint kinematics, an adaptive knee-joint exoskeleton has been designed by incorporating different kinematic components (such as a pin, slider and cam profile). This design potentially eliminates the negative effects associated with the closed leg/exoskeleton kinematic chain on a human knee. An investigation in the flexion motion of an artificial human knee joint is presented to compare performances of five exoskeleton designs against the case with no exoskeletons. Analytical results that estimate internal forces using the dynamic model (based on the properties of a knee joint) agree well with the experiments. These studies lead to an adaptive mechanism with a slider/cam as an alternative to pin joints for the exoskeleton, and illustrate the application of the model for designing an adaptive mechanism that minimizes internal joint forces due to a human-exoskeleton interaction.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-03-30  00:37:28 PST  Terms of use