ICRA 2011 Paper Abstract


Paper TuP113.2

Kesner, Samuel B. (Harvard University), Howe, Robert D. (Harvard University)

Force Control of Flexible Catheter Robots for Beating Heart Surgery

Scheduled for presentation during the Regular Sessions "Medical Robots and Systems III" (TuP113), Tuesday, May 10, 2011, 13:55−14:10, Room 5I

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on April 2, 2020

Keywords Medical Robots and Systems, Force Control, Force and Tactile Sensing


Recent developments in cardiac catheter technology promise to allow physicians to perform most cardiac interventions without stopping the heart or opening the chest. However, current cardiac devices, including newly developed catheter robots, are unable to accurately track and interact with the fast moving cardiac tissue without applying potentially damaging forces. This paper examines the challenges of implementing force control on a flexible robotic catheter. In particular, catheter friction and backlash must be compensated when controlling tissue interaction forces. Force controller designs are introduced and evaluated experimentally in a number of configurations. The controllers are based on the inner position loop force control approach where the position trajectory is adjusted to achieve a desired force on the target. Friction and backlash compensation improved force tracking up to 86% with residual RMS errors of 0.11 N while following a prerecorded cardiac tissue trajectory with accelerations of up to 3800 mm/s2. This performance provides sufficient accuracy to enable a wide range of beating heart surgical procedures.



Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-04-02  12:21:25 PST  Terms of use