ICRA 2011 Paper Abstract


Paper WeP212.2

Ugur, Emre (Advanced Telecommunications Research Institute International), Sahin, Erol (Middle East Technical University), Oztop, Erhan (ATR / NICT)

Unsupervised Learning of Object Affordances for Planning in a Mobile Manipulation Platform

Scheduled for presentation during the Regular Sessions "Learning and Adaptive Systems II" (WeP212), Wednesday, May 11, 2011, 15:40−15:55, Room 5H

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on July 14, 2020

Keywords Learning and Adaptive Systems, Mobile Manipulation, Range Sensing


In this paper, we use the notion of affordances, proposed in cognitive science, as a framework to propose a developmental method that would enable a robot to ground symbolic planning mechanisms in the continuous sensory-motor experiences of a robot. We propose a method that allows a robot to learn the symbolic relations that pertain to its interactions with the world and show that they can be used in planning. Specifically, the robot interacts with the objects in its environment using a pre-coded repertoire of behaviors and records its interactions in a triple that consist of the initial percept of the object, the behavior applied and its effect, defined as the difference between the initial and the final percept. The method allows the robot to learn object affordance relations which can be used to predict the change in the percept of the object when a certain behavior is applied. These relations can then be used to develop plans using forward chaining. The method is implemented and evaluated on a mobile robot system with limited object manipulation capabilities. We have shown that the robot is able to learn the physical affordances of objects from range images and use them to build symbols and relations that can be used in making multi-step predictions about the affordances of objects and achieve complex goals.



Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-07-14  17:04:12 PST  Terms of use