ICRA 2011 Paper Abstract

Close

Paper TuA108.3

Gautier, Maxime (Université de Nantes), Vandanjon, Pierre Olivier (Laboratoire Central des Pont et Chaussées), Janot, Alexandre (ONERA)

Dynamic Identification of a 6 Dof Robot without Joint Position Data

Scheduled for presentation during the Regular Sessions "Calibration and Identification I" (TuA108), Tuesday, May 10, 2011, 08:50−09:05, Room 5C

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on April 2, 2020

Keywords Calibration and Identification, Industrial Robots

Abstract

Off-line robot dynamic identification methods are mostly based on the use of the inverse dynamic model, which is linear with respect to the dynamic parameters. This model is sampled while the robot is tracking reference trajectories that excite the system dynamics. This allows using linear least-squares techniques to estimate the parameters. This method requires the joint force/torque and position measurements and the estimate of the joint velocity and acceleration, through the bandpass filtering of the joint position at high sampling rates. A new method called DIDIM has been proposed and validated on a 2 degree-of-freedom robot [1]. DIDIM method requires only the joint force/torque measurement. It is based on a closed-loop simulation of the robot using the direct dynamic model, the same structure of the control law, and the same reference trajectory for both the actual and the simulated robot. The optimal parameters minimize the 2-norm of the error between the actual force/torque and the simulated force/torque. A validation experiment on a 6 dof Staubli TX40 robot shows that DIDIM method is very efficient on industrial robots.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-04-02  10:59:39 PST  Terms of use