ICRA 2011 Paper Abstract

Close

Paper WeA203.5

Tao, Tong (Nankai University), Tully, Stephen (Carnegie Mellon University), Kantor, George (Carnegie Mellon University), Choset, Howie (Carnegie Mellon University)

Incremental Construction of the Saturated-GVG for Multi-Hypothesis Topological SLAM

Scheduled for presentation during the Regular Sessions "Autonomous Navigation IV" (WeA203), Wednesday, May 11, 2011, 11:05−11:20, Room 3D

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on December 8, 2019

Keywords Autonomous Navigation, SLAM, Motion and Path Planning

Abstract

The generalized Voronoi graph (GVG) is a topological representation of an environment that can be incrementally constructed with a mobile robot using sensor-based control. However, because of sensor range limitations, the GVG control law will fail when the robot moves into a large open area. This paper discusses an extended GVG approach to topological navigation and mapping: the saturated generalized Voronoi graph (S-GVG), for which the robot employs an additional wall-following behavior to navigate along obstacles at the range limit of the sensor. In this paper, we build upon previous work related to the S-GVG and provide two important contributions: 1) a rigorous discussion of the control laws and algorithm modifications that are necessary for incremental construction of the S-GVG with a mobile robot, and 2) a method for incorporating the S-GVG into a novel multi-hypothesis SLAM algorithm for loop-closing and localization. Experiments with a wheeled mobile robot in an office-like environment validate the effectiveness of the proposed approach.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2019 PaperCept, Inc.
Page generated 2019-12-08  02:27:56 PST  Terms of use