ICRA 2011 Paper Abstract

Close

Paper TuA1-InteracInterac.27

Reinstein, Michal (Czech Technical University in Prague, Faculty of Electrical Engi), Hoffmann, Matej (Department of Informatics, University of Zurich)

Dead Reckoning in a Dynamic Quadruped Robot: Inertial Navigation System Aided by a Legged Odometer

Scheduled for presentation during the Poster Sessions "Interactive Session I: Robotic Technology" (TuA1-InteracInterac), Tuesday, May 10, 2011, 08:20−09:35, Hall

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on March 30, 2020

Keywords Autonomous Navigation, Multi-legged Robots, Biologically-Inspired Robots

Abstract

It is an important ability for any mobile robot to be able to estimate its posture and to gauge the distance it travelled. The information can be obtained from various sources. In this work, we have addressed this problem in a dynamic quadruped robot. We have designed and implemented a navigation algorithm for full body state (position, velocity, and attitude) estimation that does not use any external reference (such as GPS, or visual landmarks). Extended Kalman Filter was used to provide error estimation and data fusion from two independent sources of information: Inertial Navigation System mechanization algorithm processing raw inertial data, and legged odometry, which provided velocity aiding. We present a novel data-driven architecture for legged odometry that relies on a combination of joint sensor signals and pressure sensors. Our navigation system ensures precise tracking of a running robot's posture (roll and pitch), and satisfactory tracking of its position over medium time intervals. We have shown our method to work for two different dynamic turning gaits and on two terrains with significantly different friction. We have also successfully demonstrated how our method generalizes to different velocities.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-03-30  01:06:37 PST  Terms of use