ICRA 2011 Paper Abstract

Close

Paper TuP1-InteracInterac.26

Bansal, Mayank (SRI International Sarnoff), Matei, Bogdan (SRI International Sarnoff), Southall, Ben (Sarnoff Corporation), Eledath, Jayan (SRI International Sarnoff), Sawhney, Harpreet (Sarnoff Corporation)

A LIDAR Streaming Architecture for Mobile Robotics with Application to 3D Structure Characterization

Scheduled for presentation during the Poster Sessions "Interactive Session II: Systems, Control and Automation" (TuP1-InteracInterac), Tuesday, May 10, 2011, 13:40−14:55, Hall

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on April 2, 2020

Keywords Computer Vision for Robotics and Automation, Recognition

Abstract

We present a novel LIDAR streaming architecture for real-time, on-board processing using unmanned robots. We propose a two-level 3D data structure that allows pipelined and streaming processing of the 3D data as it arrives from a moving robot: (i) at the coarse level, the incoming 3D scans are stored in memory in a dense 3D voxel grid with a relatively large voxel size - this ensures buffering of the most recent data and the availability of sufficient 3D measurements within a specific processing volume at the next level; (ii) at the fine level, we employ a data chunking mechanism guided by the movement of the robot and a rolling dense 3D voxel grid for processing the data in the immediate vicinity of the robot, which enables re use of previously computed features. The architecture proposed requires a very small memory footprint, minimal data copying, and allows a fast spatial access for 3D data, even at the finest resolutions. We illustrate the proposed streaming architecture on a real-time 3D structure characterization task for detecting doors and stairs in indoor environments and show qualitative results demonstrating the effectiveness of our approach.

 

 

Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-04-02  12:55:04 PST  Terms of use