ICRA 2011 Paper Abstract


Paper TuA206.4

Lightcap, Chris (MAKO Surgical Corp.), Kang, Hyosig (MAKO Surgical Corp.)

A Novel Passive Haptic Device for Simulating a Broad Range of Impedances

Scheduled for presentation during the Regular Sessions "Haptics and Haptic Interfaces I" (TuA206), Tuesday, May 10, 2011, 10:50−11:05, Room 5A

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on March 30, 2020

Keywords Haptics and Haptic Interfaces


The strength of a haptic display may be assessed from its range of stable impedances. This paper presents a novel passive haptic display (PARM) capable of simulating a broad range of impedances. It comprises a passive constraint that can simulate both uninhibited motion through free-space and collision into a rigid obstacle. In free-space, the user feels the natural impedance of the end-effector without the added inertia and friction from a transmission or actuator. In a collision with a rigid object, haptic stiffness can be much greater than a traditional impedance haptic display. An experimental study with a 2 DoF planar manipulator illustrates the minimum and maximum impedances that are attainable for this haptic display. The inertial mass and friction in free-space are less than 0.2 kg and 12.3 Ns/m, and the stiffness against a haptic boundary is 465 N/mm. In addition, collision with a haptic object produces a more authentic experience, since there are naturally-occurring high frequency oscillations that result from the physical collision between two objects. This novel haptic display has both the minimum impedance benefits of impedance haptic displays and the maximum impedance benefits of admittance haptic displays.



Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-03-30  00:39:42 PST  Terms of use