ICRA 2011 Paper Abstract


Paper WeA102.4

Chung, Timothy H. (Naval Postgraduate School), Carpin, Stefano (University of California, Merced)

Multiscale Search Using Probabilistic Quadtrees

Scheduled for presentation during the Regular Sessions "Agent-Based Systems II" (WeA102), Wednesday, May 11, 2011, 09:05−09:20, Room 3C

2011 IEEE International Conference on Robotics and Automation, May 9-13, 2011, Shanghai International Conference Center, Shanghai, China

This information is tentative and subject to change. Compiled on July 14, 2020

Keywords Autonomous Agents, Search and Rescue Robots, Aerial Robotics


We propose a novel framework to search for a static target using a multiscale representation. The algorithm we present is appropriate when the target detection sensor trades off accuracy versus covered area, e.g., when a UAV can fly and sense at different elevations. A structure based on quadtrees is used to propagate a posterior about the target location using a variable resolution representation that is dynamically refined in regions associated with higher probability of target presence. Probabilities are updated using a Bayesian approach accounting for erroneous sensor readings in the form of false positives and missed detections. The model we propose is coupled with a search and decision algorithm that determines where to sense next and with which accuracy. The search algorithm is based on an objective function accounting for both probability of detection and motion costs, thus aiming to minimize traveled distances while trying to localize the target. The paper is concluded with simulation results showing our approach outperforms commonly used methods based on uniform resolution grids.



Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2020 PaperCept, Inc.
Page generated 2020-07-14  17:07:25 PST  Terms of use