ICRA'09 Paper Abstract


Paper FrC6.3

Sinapov, Jivko (Iowa State University), Wiemer, Mark (Iowa State University), Stoytchev, Alexander (Iowa State University)

Interactive Learning of the Acoustic Properties of Household Objects

Scheduled for presentation during the Regular Sessions "Learning and Adaptive Systems - III" (FrC6), Friday, May 15, 2009, 14:10−14:30, Room: 404

2009 IEEE International Conference on Robotics and Automation, May 12 - 17, 2009, Kobe, Japan

This information is tentative and subject to change. Compiled on January 21, 2022

Keywords Learning and Adaptive Systems, Behaviour-Based Systems, Recognition


Human beings can perceive object properties such as size, weight, and material type based solely on the sounds that the objects make when an action is performed on them. In order to be successful, the household robots of the near future must also be capable of learning and reasoning about the acoustic properties of everyday objects. Such an ability would allow a robot to detect and classify various interactions with objects that occur outside of the robotís field of view. This paper presents a framework that allows a robot to infer the object and the type of behavioral interaction performed with it from the sounds generated by the object during the interaction. The framework is evaluated on a 7-d.o.f. Barrett WAM robot which performs grasping, shaking, dropping, pushing and tapping behaviors on 36 different household objects. The results show that the robot can learn models that can be used to recognize



Technical Content © IEEE Robotics & Automation Society

This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2022 PaperCept, Inc.
Page generated 2022-01-21  09:03:59 PST  Terms of use